-
Notifications
You must be signed in to change notification settings - Fork 5
/
train.py
497 lines (410 loc) · 20.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
"""
training code
"""
from __future__ import absolute_import
from __future__ import division
import argparse
import logging
import os
import torch
from config import cfg, assert_and_infer_cfg
from utils.misc import AverageMeter, prep_experiment, evaluate_eval, fast_hist
import datasets
import loss
import network
import optimizer
import time
import torchvision.utils as vutils
import torch.nn.functional as F
import numpy as np
import random
# Argument Parser
parser = argparse.ArgumentParser(description='Semantic Segmentation')
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--arch', type=str, default='network.deepv3.DeepR50V3PlusD',
help='Network architecture.')
parser.add_argument('--dataset', nargs='*', type=str, default=['gtav'],
help='a list of datasets; cityscapes, mapillary, gtav, bdd100k, synthia')
parser.add_argument('--image_uniform_sampling', action='store_true', default=False,
help='uniformly sample images across the multiple source domains')
parser.add_argument('--val_dataset', nargs='*', type=str, default=['bdd100k'],
help='a list consists of cityscapes, mapillary, gtav, bdd100k, synthia')
parser.add_argument('--wild_dataset', nargs='*', type=str, default=['imagenet'],
help='a list consists of imagenet')
parser.add_argument('--cv', type=int, default=0,
help='cross-validation split id to use. Default # of splits set to 3 in config')
parser.add_argument('--class_uniform_pct', type=float, default=0,
help='What fraction of images is uniformly sampled')
parser.add_argument('--class_uniform_tile', type=int, default=1024,
help='tile size for class uniform sampling')
parser.add_argument('--coarse_boost_classes', type=str, default=None,
help='use coarse annotations to boost fine data with specific classes')
parser.add_argument('--img_wt_loss', action='store_true', default=False,
help='per-image class-weighted loss')
parser.add_argument('--cls_wt_loss', action='store_true', default=False,
help='class-weighted loss')
parser.add_argument('--batch_weighting', action='store_true', default=False,
help='Batch weighting for class (use nll class weighting using batch stats')
parser.add_argument('--jointwtborder', action='store_true', default=False,
help='Enable boundary label relaxation')
parser.add_argument('--strict_bdr_cls', type=str, default='',
help='Enable boundary label relaxation for specific classes')
parser.add_argument('--rlx_off_iter', type=int, default=-1,
help='Turn off border relaxation after specific epoch count')
parser.add_argument('--rescale', type=float, default=1.0,
help='Warm Restarts new learning rate ratio compared to original lr')
parser.add_argument('--repoly', type=float, default=1.5,
help='Warm Restart new poly exp')
parser.add_argument('--fp16', action='store_true', default=False,
help='Use Nvidia Apex AMP')
parser.add_argument('--local_rank', default=0, type=int,
help='parameter used by apex library')
parser.add_argument('--sgd', action='store_true', default=False)
parser.add_argument('--adam', action='store_true', default=False)
parser.add_argument('--amsgrad', action='store_true', default=False)
parser.add_argument('--freeze_trunk', action='store_true', default=False)
parser.add_argument('--hardnm', default=0, type=int,
help='0 means no aug, 1 means hard negative mining iter 1,' +
'2 means hard negative mining iter 2')
parser.add_argument('--trunk', type=str, default='resnet-50',
help='trunk model, can be: resnet-50 (default)')
parser.add_argument('--max_epoch', type=int, default=180)
parser.add_argument('--max_iter', type=int, default=30000)
parser.add_argument('--max_cu_epoch', type=int, default=100000,
help='Class Uniform Max Epochs')
parser.add_argument('--start_epoch', type=int, default=0)
parser.add_argument('--crop_nopad', action='store_true', default=False)
parser.add_argument('--rrotate', type=int,
default=0, help='degree of random roate')
parser.add_argument('--color_aug', type=float,
default=0.0, help='level of color augmentation')
parser.add_argument('--gblur', action='store_true', default=False,
help='Use Guassian Blur Augmentation')
parser.add_argument('--bblur', action='store_true', default=False,
help='Use Bilateral Blur Augmentation')
parser.add_argument('--lr_schedule', type=str, default='poly',
help='name of lr schedule: poly')
parser.add_argument('--poly_exp', type=float, default=0.9,
help='polynomial LR exponent')
parser.add_argument('--bs_mult', type=int, default=2,
help='Batch size for training per gpu')
parser.add_argument('--bs_mult_val', type=int, default=1,
help='Batch size for Validation per gpu')
parser.add_argument('--crop_size', type=int, default=720,
help='training crop size')
parser.add_argument('--pre_size', type=int, default=None,
help='resize image shorter edge to this before augmentation')
parser.add_argument('--scale_min', type=float, default=0.5,
help='dynamically scale training images down to this size')
parser.add_argument('--scale_max', type=float, default=2.0,
help='dynamically scale training images up to this size')
parser.add_argument('--weight_decay', type=float, default=5e-4)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--snapshot', type=str, default=None)
parser.add_argument('--restore_optimizer', action='store_true', default=False)
parser.add_argument('--city_mode', type=str, default='train',
help='experiment directory date name')
parser.add_argument('--date', type=str, default='default',
help='experiment directory date name')
parser.add_argument('--exp', type=str, default='default',
help='experiment directory name')
parser.add_argument('--tb_tag', type=str, default='',
help='add tag to tb dir')
parser.add_argument('--ckpt', type=str, default='logs/ckpt',
help='Save Checkpoint Point')
parser.add_argument('--tb_path', type=str, default='logs/tb',
help='Save Tensorboard Path')
parser.add_argument('--syncbn', action='store_true', default=True,
help='Use Synchronized BN')
parser.add_argument('--dump_augmentation_images', action='store_true', default=False,
help='Dump Augmentated Images for sanity check')
parser.add_argument('--test_mode', action='store_true', default=False,
help='Minimum testing to verify nothing failed, ' +
'Runs code for 1 epoch of train and val')
parser.add_argument('-wb', '--wt_bound', type=float, default=1.0,
help='Weight Scaling for the losses')
parser.add_argument('--maxSkip', type=int, default=0,
help='Skip x number of frames of video augmented dataset')
parser.add_argument('--scf', action='store_true', default=False,
help='scale correction factor')
parser.add_argument('--dist_url', default='tcp://127.0.0.1:', type=str,
help='url used to set up distributed training')
parser.add_argument('--image_in', action='store_true', default=False,
help='Input Image Instance Norm')
parser.add_argument('--fs_layer', nargs='*', type=int, default=[0,0,0,0,0],
help='0: None, 1: AdaIN')
parser.add_argument('--lambda_cel', type=float, default=0.0,
help='lambda for content extension learning loss')
parser.add_argument('--lambda_sel', type=float, default=0.0,
help='lambda for style extension learning loss')
parser.add_argument('--lambda_scr', type=float, default=0.0,
help='lambda for semantic consistency regularization loss')
parser.add_argument('--cont_proj_head', type=int, default=0,
help='number of output channels of content projection head')
parser.add_argument('--wild_cont_dict_size', type=int, default=0,
help='wild-content dictionary size')
parser.add_argument('--use_fs', action='store_true', default=False,
help='Automatic setting from fs_layer. feature stylization with wild dataset')
parser.add_argument('--use_scr', action='store_true', default=False,
help='Automatic setting from lambda_scr')
parser.add_argument('--use_sel', action='store_true', default=False,
help='Automatic setting from lambda_sel')
parser.add_argument('--use_cel', action='store_true', default=False,
help='Automatic setting from lambda_cel')
args = parser.parse_args()
random_seed = cfg.RANDOM_SEED #304
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
args.world_size = 1
# Test Mode run two epochs with a few iterations of training and val
if args.test_mode:
args.max_epoch = 2
if 'WORLD_SIZE' in os.environ:
# args.apex = int(os.environ['WORLD_SIZE']) > 1
args.world_size = int(os.environ['WORLD_SIZE'])
print("Total world size: ", int(os.environ['WORLD_SIZE']))
torch.cuda.set_device(args.local_rank)
print('My Rank:', args.local_rank)
# Initialize distributed communication
args.dist_url = args.dist_url + str(8000 + (int(time.time()%1000))//10)
torch.distributed.init_process_group(backend='nccl',
init_method='env://',
world_size=args.world_size,
rank=args.local_rank)
# torch.distributed.init_process_group(backend='nccl',
# init_method=args.dist_url,
# world_size=args.world_size,
# rank=args.local_rank)
for i in range(len(args.fs_layer)):
if args.fs_layer[i] == 1:
args.use_fs = True
if args.lambda_cel > 0:
args.use_cel = True
if args.lambda_sel > 0:
args.use_sel = True
if args.lambda_scr > 0:
args.use_scr = True
def main():
"""
Main Function
"""
# Set up the Arguments, Tensorboard Writer, Dataloader, Loss Fn, Optimizer
assert_and_infer_cfg(args)
writer = prep_experiment(args, parser)
train_source_loader, val_loaders, train_wild_loader, train_obj, extra_val_loaders = datasets.setup_loaders(args)
criterion, criterion_val = loss.get_loss(args)
criterion_aux = loss.get_loss_aux(args)
net = network.get_net(args, criterion, criterion_aux, args.cont_proj_head, args.wild_cont_dict_size)
optim, scheduler = optimizer.get_optimizer(args, net)
net = torch.nn.SyncBatchNorm.convert_sync_batchnorm(net)
net = network.warp_network_in_dataparallel(net, args.local_rank)
epoch = 0
i = 0
if args.snapshot:
epoch, mean_iu = optimizer.load_weights(net, optim, scheduler,
args.snapshot, args.restore_optimizer)
if args.restore_optimizer is True:
iter_per_epoch = len(train_source_loader)
i = iter_per_epoch * epoch
epoch = epoch + 1
else:
epoch = 0
print("#### iteration", i)
torch.cuda.empty_cache()
while i < args.max_iter:
# Update EPOCH CTR
cfg.immutable(False)
cfg.ITER = i
cfg.immutable(True)
i = train(train_source_loader, train_wild_loader, net, optim, epoch, writer, scheduler, args.max_iter)
train_source_loader.sampler.set_epoch(epoch + 1)
train_wild_loader.sampler.set_epoch(epoch + 1)
if args.local_rank == 0:
print("Saving pth file...")
evaluate_eval(args, net, optim, scheduler, None, None, [],
writer, epoch, "None", None, i, save_pth=True)
if args.class_uniform_pct:
if epoch >= args.max_cu_epoch:
train_obj.build_epoch(cut=True)
train_source_loader.sampler.set_num_samples()
else:
train_obj.build_epoch()
epoch += 1
# Validation after epochs
if len(val_loaders) == 1:
# Run validation only one time - To save models
for dataset, val_loader in val_loaders.items():
validate(val_loader, dataset, net, criterion_val, optim, scheduler, epoch, writer, i)
else:
if args.local_rank == 0:
print("Saving pth file...")
evaluate_eval(args, net, optim, scheduler, None, None, [],
writer, epoch, "None", None, i, save_pth=True)
for dataset, val_loader in extra_val_loaders.items():
print("Extra validating... This won't save pth file")
validate(val_loader, dataset, net, criterion_val, optim, scheduler, epoch, writer, i, save_pth=False)
def train(source_loader, wild_loader, net, optim, curr_epoch, writer, scheduler, max_iter):
"""
Runs the training loop per epoch
source_loader: Source data loader for train
wild_loader: Wild data loader for train
net: thet network
optim: optimizer
curr_epoch: current epoch
writer: tensorboard writer
return:
"""
net.train()
train_total_loss = AverageMeter()
time_meter = AverageMeter()
curr_iter = curr_epoch * len(source_loader)
wild_loader_iter = enumerate(wild_loader)
for i, data in enumerate(source_loader):
if curr_iter >= max_iter:
break
inputs, gts, _, aux_gts = data
# Multi source and AGG case
if len(inputs.shape) == 5:
B, D, C, H, W = inputs.shape
num_domains = D
inputs = inputs.transpose(0, 1)
gts = gts.transpose(0, 1).squeeze(2)
aux_gts = aux_gts.transpose(0, 1).squeeze(2)
inputs = [input.squeeze(0) for input in torch.chunk(inputs, num_domains, 0)]
gts = [gt.squeeze(0) for gt in torch.chunk(gts, num_domains, 0)]
aux_gts = [aux_gt.squeeze(0) for aux_gt in torch.chunk(aux_gts, num_domains, 0)]
else:
B, C, H, W = inputs.shape
num_domains = 1
inputs = [inputs]
gts = [gts]
aux_gts = [aux_gts]
batch_pixel_size = C * H * W
for di, ingredients in enumerate(zip(inputs, gts, aux_gts)):
input, gt, aux_gt = ingredients
_, inputs_wild = next(wild_loader_iter)
input_wild = inputs_wild[0]
start_ts = time.time()
img_gt = None
input, gt = input.cuda(), gt.cuda()
input_wild = input_wild.cuda()
optim.zero_grad()
outputs = net(x=input, gts=gt, aux_gts=aux_gt, x_w=input_wild, apply_fs=args.use_fs)
outputs_index = 0
main_loss = outputs[outputs_index]
outputs_index += 1
aux_loss = outputs[outputs_index]
outputs_index += 1
total_loss = main_loss + (0.4 * aux_loss)
if args.use_fs:
if args.use_cel:
cel_loss = outputs[outputs_index]
outputs_index += 1
total_loss = total_loss + (args.lambda_cel * cel_loss)
else:
cel_loss = 0
if args.use_sel:
sel_loss_main = outputs[outputs_index]
outputs_index += 1
sel_loss_aux = outputs[outputs_index]
outputs_index += 1
total_loss = total_loss + args.lambda_sel * (sel_loss_main + (0.4 * sel_loss_aux))
else:
sel_loss_main = 0
sel_loss_aux = 0
if args.use_scr:
scr_loss_main = outputs[outputs_index]
outputs_index += 1
scr_loss_aux = outputs[outputs_index]
outputs_index += 1
total_loss = total_loss + args.lambda_scr * (scr_loss_main + (0.4 * scr_loss_aux))
else:
scr_loss_main = 0
scr_loss_aux = 0
log_total_loss = total_loss.clone().detach_()
torch.distributed.all_reduce(log_total_loss, torch.distributed.ReduceOp.SUM)
log_total_loss = log_total_loss / args.world_size
train_total_loss.update(log_total_loss.item(), batch_pixel_size)
total_loss.backward()
optim.step()
time_meter.update(time.time() - start_ts)
del total_loss, log_total_loss
if args.local_rank == 0:
if i % 50 == 49:
msg = '[epoch {}], [iter {} / {} : {}], [loss {:0.6f}], [lr {:0.6f}], [time {:0.4f}]'.format(
curr_epoch, i + 1, len(source_loader), curr_iter, train_total_loss.avg,
optim.param_groups[-1]['lr'], time_meter.avg / args.train_batch_size)
logging.info(msg)
# Log tensorboard metrics for each iteration of the training phase
writer.add_scalar('loss/train_loss', (train_total_loss.avg), curr_iter)
train_total_loss.reset()
time_meter.reset()
curr_iter += 1
scheduler.step()
if i > 5 and args.test_mode:
return curr_iter
return curr_iter
def validate(val_loader, dataset, net, criterion, optim, scheduler, curr_epoch, writer, curr_iter, save_pth=True):
"""
Runs the validation loop after each training epoch
val_loader: Data loader for validation
dataset: dataset name (str)
net: thet network
criterion: loss fn
optimizer: optimizer
curr_epoch: current epoch
writer: tensorboard writer
return: val_avg for step function if required
"""
net.eval()
val_loss = AverageMeter()
iou_acc = 0
error_acc = 0
dump_images = []
for val_idx, data in enumerate(val_loader):
inputs, gt_image, img_names, _ = data
if len(inputs.shape) == 5:
B, D, C, H, W = inputs.shape
inputs = inputs.view(-1, C, H, W)
gt_image = gt_image.view(-1, 1, H, W)
assert len(inputs.size()) == 4 and len(gt_image.size()) == 3
assert inputs.size()[2:] == gt_image.size()[1:]
batch_pixel_size = inputs.size(0) * inputs.size(2) * inputs.size(3)
inputs, gt_cuda = inputs.cuda(), gt_image.cuda()
with torch.no_grad():
output = net(inputs)
del inputs
assert output.size()[2:] == gt_image.size()[1:]
assert output.size()[1] == datasets.num_classes
val_loss.update(criterion(output, gt_cuda).item(), batch_pixel_size)
del gt_cuda
# Collect data from different GPU to a single GPU since
# encoding.parallel.criterionparallel function calculates distributed loss
# functions
predictions = output.data.max(1)[1].cpu()
# Logging
if val_idx % 20 == 0:
if args.local_rank == 0:
logging.info("validating: %d / %d", val_idx + 1, len(val_loader))
if val_idx > 10 and args.test_mode:
break
# Image Dumps
if val_idx < 10:
dump_images.append([gt_image, predictions, img_names])
iou_acc += fast_hist(predictions.numpy().flatten(), gt_image.numpy().flatten(),
datasets.num_classes)
del output, val_idx, data
iou_acc_tensor = torch.cuda.FloatTensor(iou_acc)
torch.distributed.all_reduce(iou_acc_tensor, op=torch.distributed.ReduceOp.SUM)
iou_acc = iou_acc_tensor.cpu().numpy()
if args.local_rank == 0:
evaluate_eval(args, net, optim, scheduler, val_loss, iou_acc, dump_images,
writer, curr_epoch, dataset, None, curr_iter, save_pth=save_pth)
return val_loss.avg
if __name__ == '__main__':
main()