-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIBP_modeler.m
171 lines (119 loc) · 4.55 KB
/
IBP_modeler.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
function [t,E_stat,E_ind,E_rad] = IBP_modeler(a)
% User Inputs
if nargin == 0
a=struct( ...
'maxA' , {-420} , ...
't1' , {2e-006} , ...
't2' , {32.0e-006} , ...
'v' , {4.6e7} , ...
'H1' , {7600} , ...
'H2' , {8400} , ...
'x0' , {0} , ...
'y0' , {0} , ...
'T1' , {0.1500e-004} , ...
'T2' , {2.5e-004} , ...
't_step' , {1.0000e-007}, ...
'lamda', {113}, ...
'x' , {2800} , ...
'y' , {0} ,...
'dh', {10} ...
);
end
%% Start modeling
% lamda serves a purpose similar to the characteristic length in RB
% dH = abs(a.H1 - a.H2);
% a.lamda = dH/log(dH);
a.k = (a.t2-a.t1)/a.t1;
% a.alpha = 10/a.t2;
eps0 = 8.8542e-12; % Permitivity of free space
c = 299792458/1.0003; % Speed of light in air
% get the horizontal distance from the pulse to sensors
a.x = a.x - a.x0;
a.y = a.y - a.y0;
D=sqrt(a.x^2+a.y^2);
% Counter
i=0;
ln=length(a.T1:a.t_step:a.T2);
Z = (a.H1:a.dh:a.H2)';
E_ind = zeros(1,ln);
E_rad = E_ind;
E_stat = E_ind;
wbh = waitbar(0,'Please wait...','Name','IBP Modeler');
intgr=0;
for t=a.T1:a.t_step:a.T2
i=i+1;
try
waitbar(i/ln,wbh,sprintf('Please Wait... %.0f%%',i*100/ln))
catch
disp('NBP Program Stopped by User!')
return
end
% Current and derivation of current
[ii,didt]=current(Z,t-(Z-a.H1)/a.v-((D^2+Z.^2).^0.5)/c,a);
% Radiation term
Y = (-1/2/pi/eps0)*D^2./(c^2*(D^2+Z.^2).^1.5).*didt;
E_rad(i) = trapz(Z,Y);
% Induction Term
Y = (1/2/pi/eps0)*((2*Z.^2-D^2)./(c*((Z.^2+D^2).^2))).*ii;
E_ind(i) = trapz(Z,Y);
% Electro Static Term
%Y=(1/2/pi/eps0)*(2*Z.^2 - D^2)./((D^2+Z.^2).^2.5).*intI;
intgr = int_i(Z,t-(Z-a.H1)/a.v-(D^2+Z.^2).^0.5/c,a,intgr);
Y=(1/2/pi/eps0)*(2*Z.^2 - D^2)./((D^2+Z.^2).^2.5).*intgr;
E_stat(i) = trapz(Z,Y);
% figure(500)
% plot(Y)
end
t=(a.T1:a.t_step:a.T2);
% figure
% hold all
% tools2fig
% plot(t,E_rad)
% plot(t,E_ind)
% plot(t,E_stat)
delete(wbh)
function [ii didt]=current(z,t,a)
ii=zeros(size(z));
didt=zeros(size(z));
for j=1:length(t)
if t(j) <= a.t1
% MTLEI
%ii(j)=a.maxA*exp((z(j)-a.H1)/a.lamda)*exp(-a.alpha^2*(t(j)-a.t1)^2);
%didt(j)=exp((z(j)-a.H1)/a.lamda)*(-2)*a.maxA*a.alpha^2*(t(j)-a.t1)*exp(-a.alpha^2*(t(j)-a.t1)^2);
% TL
% ii(j)=a.maxA*exp(-a.alpha^2*(t(j)-a.t1)^2);
% didt(j)=(-2)*a.maxA*a.alpha^2*(t(j)-a.t1)*exp(-a.alpha^2*(t(j)-a.t1)^2);
% MTLL
% ii(j)=a.maxA*(1 - (z(j)-a.H1)/a.H1)*exp(-a.alpha^2*(t(j)-a.t1)^2);
% didt(j)=(1 - (z(j)-a.H1)/a.H1)*(-2)*a.maxA*a.alpha^2*(t(j)-a.t1)*exp(-a.alpha^2*(t(j)-a.t1)^2);
% MTLE
ii(j) = a.maxA*exp(-(z(j)-a.H1)/a.lamda)*exp(-a.alpha^2*(t(j)-a.t1)^2);
didt(j)= exp(-(z(j)-a.H1)/a.lamda)*(-2)*a.maxA*a.alpha^2*(t(j)-a.t1)*exp(-a.alpha^2*(t(j)-a.t1)^2);
else
% % MTLEI
ii(j)=a.maxA*exp((z(j)-a.H1)/a.lamda)*exp(-(a.alpha/a.k)^2*(t(j)-a.t1)^2);
didt(j)=exp((z(j)-a.H1)/a.lamda)*(-2)*a.maxA*(a.alpha/a.k)^2*(t(j)-a.t1).*exp(-(a.alpha/a.k)^2*(t(j)-a.t1)^2);
%
% % TL
% ii(j)=a.maxA*exp(-(a.alpha/a.k)^2*(t(j)-a.t1)^2);
% didt(j)=(-2)*a.maxA*(a.alpha/a.k)^2*(t(j)-a.t1).*exp(-(a.alpha/a.k)^2*(t(j)-a.t1)^2);
%
% % MTLL
% ii(j)=a.maxA*(1 - (z(j)-a.H1)/a.H1)*exp(-(a.alpha/a.k)^2*(t(j)-a.t1)^2);
% didt(j)=(1 - (z(j)-a.H1)/a.H1)*(-2)*a.maxA*(a.alpha/a.k)^2*(t(j)-a.t1).*exp(-(a.alpha/a.k)^2*(t(j)-a.t1)^2);
% MTLE
ii(j)=a.maxA*exp(-(z(j)-a.H1)/a.lamda)*exp(-(a.alpha/a.k)^2*(t(j)-a.t1)^2);
didt(j)=exp(-(z(j)-a.H1)/a.lamda)*(-2)*a.maxA*(a.alpha/a.k)^2*(t(j)-a.t1).*exp(-(a.alpha/a.k)^2*(t(j)-a.t1)^2);
end
end
function intgr=int_i(z,t,a,intgr)
tau=t-a.t_step:a.t_step/1:t;
inti=zeros(size(z));
for j=1:length(z)
cr=zeros(size(tau));
for kk=1:length(tau)
cr(kk)= current(z(j),tau(kk),a);
end
inti(j)=trapz(tau,cr);
end
intgr=inti+intgr;