-
Notifications
You must be signed in to change notification settings - Fork 3
/
trainer.py
133 lines (103 loc) · 4.22 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import sys
import logging
import copy
import torch
from utils import factory
from utils.data_manager import DataManager
from utils.toolkit import count_parameters
import os
def train(args):
seed_list = copy.deepcopy(args["seed"])
device = copy.deepcopy(args["device"])
for seed in seed_list:
args["seed"] = seed
args["device"] = device
_train(args)
def _train(args):
init_cls = 0 if args ["init_cls"] == args["increment"] else args["init_cls"]
logs_name = "logs/{}/{}/{}/{}".format(args["model_name"],args["dataset"], init_cls, args['increment'])
if not os.path.exists(logs_name):
os.makedirs(logs_name)
logfilename = "logs/{}/{}/{}/{}/{}_{}_{}".format(
args["model_name"],
args["dataset"],
init_cls,
args["increment"],
args["prefix"],
args["seed"],
args["backbone_type"],
)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(filename)s] => %(message)s",
handlers=[
logging.FileHandler(filename=logfilename + ".log"),
logging.StreamHandler(sys.stdout),
],
)
_set_random(args["seed"])
_set_device(args)
print_args(args)
data_manager = DataManager(
args["dataset"],
args["shuffle"],
args["seed"],
args["init_cls"],
args["increment"],
args,
)
args["nb_classes"] = data_manager.nb_classes # update args
args["nb_tasks"] = data_manager.nb_tasks
model = factory.get_model(args["model_name"], args)
cnn_curve, nme_curve = {"top1": [], "top5": []}, {"top1": [], "top5": []}
for task in range(data_manager.nb_tasks):
logging.info("All params: {}".format(count_parameters(model._network)))
logging.info(
"Trainable params: {}".format(count_parameters(model._network, True))
)
model.incremental_train(data_manager)
cnn_accy, nme_accy = model.eval_task()
model.after_task()
if nme_accy is not None:
logging.info("CNN: {}".format(cnn_accy["grouped"]))
logging.info("NME: {}".format(nme_accy["grouped"]))
cnn_curve["top1"].append(cnn_accy["top1"])
cnn_curve["top5"].append(cnn_accy["top5"])
nme_curve["top1"].append(nme_accy["top1"])
nme_curve["top5"].append(nme_accy["top5"])
logging.info("CNN top1 curve: {}".format(cnn_curve["top1"]))
logging.info("CNN top5 curve: {}".format(cnn_curve["top5"]))
logging.info("NME top1 curve: {}".format(nme_curve["top1"]))
logging.info("NME top5 curve: {}\n".format(nme_curve["top5"]))
print('Average Accuracy (CNN):', sum(cnn_curve["top1"])/len(cnn_curve["top1"]))
print('Average Accuracy (NME):', sum(nme_curve["top1"])/len(nme_curve["top1"]))
logging.info("Average Accuracy (CNN): {}".format(sum(cnn_curve["top1"])/len(cnn_curve["top1"])))
logging.info("Average Accuracy (NME): {}".format(sum(nme_curve["top1"])/len(nme_curve["top1"])))
else:
logging.info("No NME accuracy.")
logging.info("CNN: {}".format(cnn_accy["grouped"]))
cnn_curve["top1"].append(cnn_accy["top1"])
cnn_curve["top5"].append(cnn_accy["top5"])
logging.info("CNN top1 curve: {}".format(cnn_curve["top1"]))
logging.info("CNN top5 curve: {}\n".format(cnn_curve["top5"]))
print('Average Accuracy (CNN):', sum(cnn_curve["top1"])/len(cnn_curve["top1"]))
logging.info("Average Accuracy (CNN): {} \n".format(sum(cnn_curve["top1"])/len(cnn_curve["top1"])))
def _set_device(args):
device_type = args["device"]
gpus = []
for device in device_type:
if device == -1:
device = torch.device("cpu")
else:
device = torch.device("cuda:{}".format(device))
gpus.append(device)
args["device"] = gpus
def _set_random(seed=1):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def print_args(args):
for key, value in args.items():
logging.info("{}: {}".format(key, value))