-
Notifications
You must be signed in to change notification settings - Fork 2
/
config.py
97 lines (70 loc) · 1.9 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
import tensorflow as tf
def operators_list():
return ['add', 'subtract', 'multiply', 'divide', 'modulo']
def operand_digits_list():
return [4, 6, 8]
def np_type():
return np.int
def dir_data():
return 'data'
def dir_saved_models():
#return 'saved_models'
return dir_logs()
def dir_plot_fig():
return 'plot_figures'
def dir_logs():
return 'tb_logs'
def dir_run_info_experiments():
return 'run_info'
def dir_measure_log():
return 'measure_logs'
def dir_vis_hidden():
return 'vis_hidden'
def carry_dataset_statistics_name():
return 'carry_dataset_statistics.csv'
def batch_size():
return 32
def big_batch_size():
return batch_size() * (2**4) # 32 * (2**4) == 512
def n_epoch():
return 999999999999
def learning_rate():
return 0.001
def all_correct_stop():
return True
def big_batch_saturation():
return False
def activation():
return tf.nn.sigmoid # tf.nn.sigmoid, tf.nn.tanh, tf.nn.relu
def decreasing_dev_summary_period():
return False
def l1_coef():
return 0
def l2_coef():
return 0
def dataset_ratio():
(train_ratio, dev_ratio, test_ratio) = (1.0, 0.0, 0.0)
return train_ratio, dev_ratio, test_ratio
def tlu_on():
return False
'''operators_list = ['add', 'subtract', 'multiply', 'divide', 'modulo']
operand_digits_list = [4, 6, 8]
np_type = np.int
dir_data = 'data'
dir_saved_models = 'saved_models'
dir_plot_fig = 'plot_figures'
dir_logs = 'tb_logs'
dir_run_info_experiments = 'run_info'
dir_measure_log = 'measure_logs'
carry_dataset_statistics_name = 'carry_dataset_statistics.csv'
# Hyperparameters - training
batch_size = 32
big_batch_size = batch_size * (2**4) # 32 * (2**4) == 512
n_epoch = 999999999999
learning_rate = 0.001
all_correct_stop = True
big_batch_saturation = False
activation = tf.nn.sigmoid # tf.nn.sigmoid, tf.nn.tanh, tf.nn.relu
decreasing_dev_summary_period = False
'''