-
Notifications
You must be signed in to change notification settings - Fork 2
/
mlp_run.py
551 lines (442 loc) · 24.7 KB
/
mlp_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector
import numpy as np
import utils
import data_utils
from datetime import datetime
import os
import pickle
import sys
import config
def main():
experiment_name = sys.argv[1]
operand_bits = int(sys.argv[2])
operator = sys.argv[3]
hidden_units = int(sys.argv[4])
str_device_num = str(int(sys.argv[5]))
nn_model_type = 'mlp'
tlu_on = config.tlu_on()
mlp_run(experiment_name, operand_bits, operator, hidden_units, str_device_num,
nn_model_type, tlu_on)
def mlp_run(experiment_name, operand_bits, operator, hidden_units, str_device_num,
nn_model_type, tlu_on):
def train(sess, batch_input, batch_target, float_epoch, all_correct_val):
_, _, _ = sess.run([loss, op_accuracy, train_op],
feed_dict={inputs:batch_input, targets:batch_target,
condition_tlu:False,
training_epoch:float_epoch,
big_batch_training:big_batch_training_val,
all_correct_epoch:(all_correct_val * float_epoch),
all_correct:all_correct_val})
def write_train_summary(sess, compute_nodes, batch_input, batch_target, float_epoch, all_correct_val, step):
# Run computing train loss, accuracy
train_loss, train_accuracy, merged_summary_op_val = sess.run(
compute_nodes,
feed_dict={inputs:batch_input, targets:batch_target,
condition_tlu:False,
training_epoch:float_epoch,
big_batch_training:big_batch_training_val,
all_correct_epoch:(all_correct_val * float_epoch),
all_correct:all_correct_val})
##print("epoch: {}, step: {}, train_loss: {}, train_accuracy: {}".format(epoch, step, train_loss, train_accuracy))
#train_summary_writer.add_summary(merged_summary_op_val, step)
return (train_loss, train_accuracy)
def write_dev_summary(sess, compute_nodes, float_epoch, all_correct_val, step):
dev_loss, dev_accuracy, merged_summary_op_val, dev_op_wrong_val, per_digit_accuracy_val, per_digit_wrong_val = sess.run(
compute_nodes,
feed_dict={inputs:input_dev, targets:target_dev,
condition_tlu:False,
training_epoch:float_epoch,
big_batch_training:big_batch_training_val,
all_correct_epoch:(all_correct_val * float_epoch),
all_correct:all_correct_val})
##print("└ epoch: {}, step: {}, dev_loss: {}, dev_accuracy: {}, op_wrong: {}".format(epoch, step, dev_loss, dev_accuracy, op_wrong_val))
#dev_summary_writer.add_summary(merged_summary_op_val, step)
return (dev_loss, dev_accuracy, dev_op_wrong_val, per_digit_accuracy_val, per_digit_wrong_val)
def write_tlu_dev_summary(sess, compute_nodes, float_epoch, all_correct_val, step):
dev_loss_tlu, dev_accuracy_tlu, merged_summary_op_val, dev_op_wrong_val_tlu, _, _ = sess.run(
compute_nodes,
feed_dict={inputs:input_dev, targets:target_dev,
condition_tlu:True,
training_epoch:float_epoch,
big_batch_training:big_batch_training_val,
all_correct_epoch:(all_correct_val * float_epoch),
all_correct:all_correct_val})
##print("└ [TLU] epoch: {}, step: {}, dev_loss: {}, dev_accuracy: {}, op_wrong: {}".format(epoch, step, dev_loss_tlu, dev_accuracy_tlu, op_wrong_val_tlu))
#tlu_summary_writer.add_summary(merged_summary_op_val, step)
return (dev_loss_tlu, dev_accuracy_tlu, dev_op_wrong_val_tlu)
def write_test_summary(sess, compute_nodes, float_epoch, all_correct_val, step):
test_loss, test_accuracy, merged_summary_op_val, op_wrong_val = sess.run(
compute_nodes,
feed_dict={inputs:input_test, targets:target_test,
condition_tlu:False,
training_epoch:float_epoch,
big_batch_training:big_batch_training_val,
all_correct_epoch:(all_correct_val * float_epoch),
all_correct:all_correct_val})
print("└ epoch: {}, step: {}, test_loss: {}, test_accuracy: {}, op_wrong: {}".format(epoch, step, test_loss, test_accuracy, op_wrong_val))
#test_summary_writer.add_summary(merged_summary_op_val, step)
return (test_loss, test_accuracy, op_wrong_val)
def write_carry_datasets_summary(sess, compute_nodes, float_epoch, all_correct_val, step):
value_dict = dict()
for n_carries in carry_datasets.keys():
carry_dataset_input = carry_datasets[n_carries]['input']
carry_dataset_output = carry_datasets[n_carries]['output']
carry_loss_val, carry_accuracy_val, merged_summary_op_val, carry_op_wrong_val, carry_per_digit_accuracy_val, carry_per_digit_wrong_val = sess.run(
compute_nodes,
feed_dict={inputs:carry_dataset_input, targets:carry_dataset_output,
condition_tlu:False,
training_epoch:float_epoch,
big_batch_training:big_batch_training_val,
all_correct_epoch:(all_correct_val * float_epoch),
all_correct:all_correct_val})
value_dict[n_carries] = (carry_loss_val, carry_accuracy_val, carry_op_wrong_val, carry_per_digit_accuracy_val, carry_per_digit_wrong_val)
#carry_datasets_summary_writers[n_carries].add_summary(merged_summary_op_val, step)
return value_dict
def write_embeddings_summary(sess, h1):
# Reference: https://stackoverflow.com/questions/40849116/how-to-use-tensorboard-embedding-projector
dir_logs = os.path.join(config.dir_saved_models(), experiment_name)
metadata = os.path.join(dir_logs, 'metadata.tsv')
carry_datasets = data_utils.import_carry_datasets(operand_bits, operator)
input_arrays = list()
with open(metadata, 'w') as f:
for carries in carry_datasets.keys():
input_arrays.append(carry_datasets[carries]['input'])
f.write('{}\n'.format(carries))
carry_inputs = np.concatenate(input_arrays, axis=0)
[h1_val] = sess.run([h1],
feed_dict={inputs:carry_inputs,
condition_tlu:False})
h1_var = tf.Variable(h1_val, name='h1_var')
saver = tf.train.Saver([h1_var])
sess.run(h1_var.initializer)
saver.save(sess, os.path.join(dir_logs, 'h1_var.ckpt'))
pconfig = projector.ProjectorConfig()
pconfig.model_checkpoint_path = os.path.join(dir_logs, 'h1_var.ckpt')
embedding = pconfig.embeddings.add()
embedding.tensor_name = h1_var.name
embedding.metadata_path = metadata
projector.visualize_embeddings(tf.summary.FileWriter(dir_logs), pconfig)
def create_carry_datasets_summary_writers(logdir, carry_datasets):
carry_datasets_summary_writers = dict()
for n_carries in carry_datasets.keys():
carry_datasets_summary_writers[n_carries] = tf.summary.FileWriter(logdir + '/carry-{}'.format(n_carries))
return carry_datasets_summary_writers
def close_carry_datasets_summary_writers(carry_datasets_summary_writers):
for n_carries in carry_datasets_summary_writers.keys():
carry_datasets_summary_writers[n_carries].close()
def get_all_correct_val(op_wrong_val):
if op_wrong_val == 0:
return True
else:
return False
def is_last_batch(i_batch):
if i_batch == (n_batch - 1):
return True
else:
return False
def decrease_dev_summary_period(dev_accuracy_val, op_wrong_val):
# Preconditions
if not decreasing_dev_summary_period:
return
if dev_accuracy_val < 0.999:
return
# If the preconditions are satisfied, ...
if op_wrong_val <= 8:
dev_summary_period = int(init_dev_summary_period // 128)
elif op_wrong_val <= 16:
dev_summary_period = int(init_dev_summary_period // 64)
if op_wrong_val <= 32:
dev_summary_period = int(init_dev_summary_period // 32)
elif op_wrong_val <= 64:
dev_summary_period = int(init_dev_summary_period // 16)
elif op_wrong_val <= 128:
dev_summary_period = int(init_dev_summary_period // 8)
if op_wrong_val > 512:
dev_summary_period = init_dev_summary_period
############################################################################
# Running point.
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"]= str_device_num # 0, 1
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Disable all debugging logs: Unable to display GPU info when running on the bash
# Import datasets
(train_ratio, dev_ratio, test_ratio) = config.dataset_ratio()
(input_train, input_dev, input_test,
target_train, target_dev, target_test
) = data_utils.import_op_dataset(operator, operand_bits,
train_ratio=train_ratio, dev_ratio=dev_ratio, test_ratio=test_ratio)
if operator in config.operators_list():
carry_datasets = data_utils.import_carry_datasets(operand_bits, operator)
# If the training dataset takes all examples, then the dev and test datasets are the same as the training one.
if dev_ratio == 0.0 and test_ratio == 0.0:
input_dev = input_train
target_dev = target_train
input_test = input_train
target_test = target_train
if dev_ratio == 0.0 and test_ratio != 0.0:
input_dev = input_test
target_dev = target_test
# Contants
NN_INPUT_DIM = input_train.shape[1]
NN_OUTPUT_DIM = target_train.shape[1]
# Hyperparameters - training
batch_size = config.batch_size()
big_batch_size = config.big_batch_size()
n_epoch = config.n_epoch()
learning_rate = config.learning_rate()
all_correct_stop = config.all_correct_stop()
big_batch_saturation = config.big_batch_saturation()
if big_batch_saturation:
all_correct_stop = False
# Hyperparameters - model
activation = config.activation() # tf.nn.sigmoid, tf.nn.tanh, tf.nn.relu
str_activation = utils.get_str_activation(activation)
h_layer_dims = [hidden_units] # h_layer_dims[0]: dim of h1 layer
last_size = NN_OUTPUT_DIM
# Variables determined by other variables
train_size = input_train.shape[0]
n_batch = train_size // batch_size
# Print periods
train_summary_period = n_batch // 4 # 4 times per epoch
init_dev_summary_period = n_batch # n_batch: print at every epoch
dev_summary_period = init_dev_summary_period
decreasing_dev_summary_period = config.decreasing_dev_summary_period()
# Weight initialization
## https://www.tensorflow.org/api_docs/python/tf/contrib/layers/variance_scaling_initializer
if activation == tf.nn.relu:
init_factor = 2.0
if activation == tf.nn.sigmoid:
init_factor = 1.0
if activation == tf.nn.tanh:
init_factor = 1.0
fan_in_1 = NN_INPUT_DIM
fan_in_2 = h_layer_dims[0]
############################################################################
# Creating a computational graph.
# Initializing paraters to learn.
with tf.name_scope('parameter'):
W1 = tf.Variable(tf.truncated_normal((NN_INPUT_DIM, h_layer_dims[0]), stddev=np.sqrt(init_factor / fan_in_1)), name="W1")
b1 = tf.Variable(tf.zeros((h_layer_dims[0])), name="b1")
W2 = tf.Variable(tf.truncated_normal((h_layer_dims[0], NN_OUTPUT_DIM), stddev=np.sqrt(init_factor / fan_in_2)), name="W2")
b2 = tf.Variable(tf.zeros((NN_OUTPUT_DIM)), name="b2")
# Setting the input and target output.
inputs = tf.placeholder(tf.float32, shape=(None, input_train.shape[1]), name='inputs') # None for mini-batch size
targets = tf.placeholder(tf.float32, shape=(None, target_train.shape[1]), name='targets')
condition_tlu = tf.placeholder(tf.int32, shape=(), name="tlu_condition")
is_tlu_hidden = tf.greater(condition_tlu, tf.constant(0, tf.int32))
#is_tlu_hidden = tf.constant(condition_tlu == True, dtype=tf.bool) # https://github.com/pkmital/tensorflow_tutorials/issues/36
# NN structure
with tf.name_scope('layer1'):
h1_logits = tf.add(tf.matmul(inputs, W1), b1)
h1 = tf.cond(is_tlu_hidden, lambda: utils.tf_tlu(h1_logits, name='h1_tlu'), lambda: activation(h1_logits, name='h1')) # https://stackoverflow.com/questions/35833011/how-to-add-if-condition-in-a-tensorflow-graph / https://www.tensorflow.org/versions/r1.7/api_docs/python/tf/cond
with tf.name_scope('layer2'):
last_logits = tf.add(tf.matmul(h1, W2), b2)
sigmoid_outputs = tf.sigmoid(last_logits)
predictions = utils.tf_tlu(sigmoid_outputs, name='predictions')
# Loss: objective function
with tf.name_scope('loss'):
loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=targets, logits=last_logits) # https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits
loss = tf.reduce_mean(loss)
if config.l1_coef() != 0:
loss = loss \
+ config.l1_coef() / (2 * batch_size) * (tf.reduce_sum(tf.abs(W1)) + tf.reduce_sum(tf.abs(W2)))
# + config.l1_coef() / (2 * batch_size) * (tf.reduce_sum(tf.abs(tf.abs(W1) - 1)) + tf.reduce_sum(tf.abs(tf.abs(W2) - 1)))
if config.l2_coef() != 0:
loss = loss \
+ config.l2_coef() / (2 * batch_size) * (tf.reduce_sum(tf.square(W1)) + tf.reduce_sum(tf.square(W2)))
# Get measures:
# [1] operation measures (accuracy, n_wrong, n_correct)
# [2] mean digits accuracy (mean_digits_accuracy)
# [3] per digit accuracy (per_digit_accuracy)
(op_accuracy, op_wrong, op_correct,
digits_mean_accuracy, digits_mean_wrong, digits_mean_correct,
per_digit_accuracy, per_digit_wrong, per_digit_correct
) = utils.get_measures(targets, predictions)
# Training, optimization
train_op = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
init = tf.global_variables_initializer()
training_epoch = tf.placeholder(tf.float32, shape=None)
all_correct_epoch = tf.placeholder(tf.float32, shape=None)
big_batch_training = tf.placeholder(tf.int32, shape=None)
all_correct = tf.placeholder(tf.int32, shape=None)
# Summary: Scalar
## Measures
tf.summary.scalar('loss', loss)
with tf.name_scope('operation'):
tf.summary.scalar('accuracy', op_accuracy)
tf.summary.scalar('wrong', op_wrong)
with tf.name_scope('digits'):
tf.summary.scalar('mean_accuracy', digits_mean_accuracy)
tf.summary.scalar('mean_wrong', digits_mean_wrong)
with tf.name_scope('per_digit'):
for i in range(NN_OUTPUT_DIM):
tf.summary.scalar('digit-{}/accuracy'.format(i+1), per_digit_accuracy[-(i+1)])
tf.summary.scalar('digit-{}/wrong'.format(i+1), per_digit_wrong[-(i+1)])
# add per_digit_correct
tf.summary.scalar('epoch', training_epoch)
tf.summary.scalar('all_correct_epoch', all_correct_epoch)
tf.summary.scalar('big_batch_training', big_batch_training)
tf.summary.scalar('all_correct', all_correct)
tf.summary.scalar('condition_tlu', condition_tlu)
# Summary: Histogram
with tf.name_scope('layer1'):
tf.summary.histogram('weight', W1)
tf.summary.histogram('bias', b1)
tf.summary.histogram('activation', h1)
with tf.name_scope('layer2'):
tf.summary.histogram('weight', W2)
tf.summary.histogram('bias', b2)
tf.summary.histogram('activation', sigmoid_outputs)
# Merge summary operations
merged_summary_op = tf.summary.merge_all()
run_info = utils.init_run_info(NN_OUTPUT_DIM)
# Experiment info
run_info['experiment_name'] = experiment_name
# Problem info
run_info['operator'] = operator
run_info['operand_bits'] = operand_bits
run_info['result_bits'] = target_train.shape[1]
# Network info
run_info['network_input_dimension'] = input_train.shape[1]
run_info['network_output_dimension'] = target_train.shape[1]
run_info['hidden_activation'] = str_activation
run_info['hidden_dimensions'] = h_layer_dims
# Dataset info
run_info['train_set_size'] = input_train.shape[0]
run_info['dev_set_size'] = input_dev.shape[0]
run_info['test_set_size'] = input_test.shape[0]
# Optimizer info
run_info['batch_size'] = batch_size
run_info['optimizer'] = train_op.name
run_info['learning_rate'] = learning_rate
run_info['all_correct_stop'] = all_correct_stop
run_id = datetime.now().strftime('%Y%m%d%H%M%S')
run_info['run_id'] = run_id
# Train logging
logdir = '{}/{}/{}_{}bit_{}_{}_h{}_run-{}/'.format(
config.dir_logs(), experiment_name, operator, operand_bits, nn_model_type, str_activation, h_layer_dims, run_id)
#train_summary_writer = tf.summary.FileWriter(logdir + '/train', graph=tf.get_default_graph())
#dev_summary_writer = tf.summary.FileWriter(logdir + '/dev')
#if tlu_on:
# tlu_summary_writer = tf.summary.FileWriter(logdir + '/tlu')
#test_summary_writer = tf.summary.FileWriter(logdir + '/test')
#if operator in config.operators_list():
# carry_datasets_summary_writers = create_carry_datasets_summary_writers(logdir, carry_datasets)
# Model saving
#dir_saved_model = '{}/{}/{}_{}bit_{}_{}_h{}/run-{}/'.format(
# config.dir_saved_models(), experiment_name, operator, operand_bits, nn_model_type, str_activation, h_layer_dims, run_id)
#utils.create_dir(dir_saved_model)
#model_saver = tf.train.Saver()
#init_all_correct_model_saver = tf.train.Saver()
# Compute nodes
train_compute_nodes = [loss, op_accuracy, merged_summary_op]
dev_compute_nodes = [loss, op_accuracy, merged_summary_op, op_wrong, per_digit_accuracy, per_digit_wrong]
test_compute_nodes = [loss, op_accuracy, merged_summary_op, op_wrong]
# Session configuration
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
print("Run ID: {}".format(run_id))
print(logdir)
#print(dir_saved_model)
with tf.Session(config=tf_config) as sess:
sess.run(init)
float_epoch = 0.0
all_correct_val = False
big_batch_training_val = False
init_all_correct_model_saved = False
for epoch in range(n_epoch):
input_train, target_train = utils.shuffle_np_arrays(input_train, target_train)
if big_batch_saturation and all_correct_val:
big_batch_training_val = True
batch_size = big_batch_size
for i_batch in range(n_batch):
# Get mini-batch
batch_input, batch_target = utils.get_batch(i_batch, batch_size, input_train, target_train)
# Initial state evalutation: No training
if epoch == 0 and i_batch == 0:
step = 0
float_epoch = 0.0
write_train_summary(sess, train_compute_nodes, batch_input, batch_target, float_epoch, all_correct_val, step)
write_dev_summary(sess, dev_compute_nodes, float_epoch, all_correct_val, step)
if tlu_on:
write_tlu_dev_summary(sess, dev_compute_nodes, float_epoch, all_correct_val, step)
# Set step, float_epoch
## 1 <= (i_batch + 1) <= n_batch
step = n_batch * epoch + (i_batch + 1)
float_epoch = epoch + float(i_batch + 1) / n_batch
# Training operation ##################################################################
train(sess, batch_input, batch_target, float_epoch, all_correct_val)
# training set summary writer###########################################################
if step % train_summary_period == 0:
(train_loss, train_accuracy) = write_train_summary(sess, train_compute_nodes, batch_input, batch_target, float_epoch, all_correct_val, step)
# Development loss evalution
# After dev_summary_period batches are trained
if (step % dev_summary_period == 0) or is_last_batch(i_batch):
# dev set summary writer#############################################################
dev_run_outputs = (dev_loss_val, dev_accuracy_val, dev_op_wrong_val, per_digit_accuracy_val, per_digit_wrong_val) = write_dev_summary(sess, dev_compute_nodes, float_epoch, all_correct_val, step)
# carry datasets summary writer #####################################################
if operator in config.operators_list():
carry_run_outputs = write_carry_datasets_summary(sess, dev_compute_nodes, float_epoch, all_correct_val, step)
# TLU-dev summary writer#############################################################
# tlu_on
if tlu_on:
dev_tlu_run_outputs = (dev_loss_tlu_val, dev_accuracy_tlu_val, dev_op_wrong_tlu_val) = write_tlu_dev_summary(sess, dev_compute_nodes, float_epoch, all_correct_val, step)
else:
dev_tlu_run_outputs = None
# Write running information################################
if operator in config.operators_list():
run_info = utils.write_run_info(run_info, float_epoch,
dev_run_outputs, dev_tlu_run_outputs, carry_run_outputs)
else:
run_info = utils.write_run_info(run_info, float_epoch,
dev_run_outputs, dev_tlu_run_outputs)
# Write the logs of measures################################
#utils.write_measures(run_info, float_epoch,
# dev_run_outputs, dev_tlu_run_outputs)
#if is_last_batch(i_batch):
# After one epoch is trained
# Save the trained model ################################################
#model_saver.save(sess, '{}/dev-{}.ckpt'.format(dir_saved_model, run_id))
##print("Model saved.")
# decrease_dev_summary_period
decrease_dev_summary_period(dev_accuracy_val, dev_op_wrong_val)
# If there is no wrong operation, then ...
all_correct_val = get_all_correct_val(dev_op_wrong_val)
# If the model is trained with 100% accuracy,
if all_correct_val and (not init_all_correct_model_saved):
# Save the model.
model_name = 'epoch{}-batch{}'.format(float_epoch, i_batch)
#init_all_correct_model_saver.save(sess, '{}/{}-init-all-correct.ckpt'.format(
# dir_saved_model, model_name))
#write_embeddings_summary(sess, h1)
init_all_correct_model_saved = True
if all_correct_val and all_correct_stop:
break # Break the batch for-loop
# End of one epoch
if all_correct_val and all_correct_stop:
break # Break the epoch for-loop
# End of all epochs
# Test loss evalution
# Run computing test loss, accuracy
# test set summary writer#############################################################
(test_loss, test_accuracy, test_op_wrong_val) = write_test_summary(sess, test_compute_nodes, float_epoch, all_correct_val, step)
#model_saver.save(sess, '{}/{}.ckpt'.format(dir_saved_model, run_id))
print("Model saved.")
# Write running information################################
if operator in config.operators_list():
run_info = utils.write_run_info(run_info, float_epoch,
dev_run_outputs, dev_tlu_run_outputs, carry_run_outputs, final=True)
else:
run_info = utils.write_run_info(run_info, float_epoch,
dev_run_outputs, dev_tlu_run_outputs, final=True)
#train_summary_writer.close()
#dev_summary_writer.close()
#if tlu_on:
# tlu_summary_writer.close()
#test_summary_writer.close()
#if operator in config.operators_list():
# close_carry_datasets_summary_writers(carry_datasets_summary_writers)
print("The training is over.")
if __name__ == "__main__":
# execute only if run as a script
main()