-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtutorial42_imageCaptioningWithVisualAttention.py
422 lines (328 loc) · 15.7 KB
/
tutorial42_imageCaptioningWithVisualAttention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# https://www.tensorflow.org/tutorials/text/image_captioning
import tensorflow as tf
# You'll generate plots of attention in order to see which parts of an image our model focuses
# on during captioning
import matplotlib.pyplot as plt
# Scikit-learn includes many helpful utilities
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
import collections
import random
import re
import numpy as np
import os
import time
import json
from glob import glob
from PIL import Image
import pickle
# MS-COCO 데이터셋 다운로드 및 준비(주의 : 대용량 다운로드. 13GB)
annotation_folder = '/annotations/'
if not os.path.exists(os.path.abspath('.') + annotation_folder):
annotation_zip = tf.keras.utils.get_file('captions.zip', cache_subdir = os.path.abspath('.'),
origin = 'http://images.cocodataset.org/annotations/annotations_trainval2014.zip',
extract = True)
annotation_file = os.path.dirname(annotation_zip) + '/annotations/captions_train2014.json'
os.remove(annotation_zip)
# 아래 else 문 추가함.
else:
annotation_file = os.path.abspath('.') + '/annotations/captions_train2014.json'
# Download image files
image_folder = '/train2014/'
if not os.path.exists(os.path.abspath('.') + image_folder):
image_zip = tf.keras.utils.get_file('train2014.zip', cache_subdir = os.path.abspath('.'),
origin = 'http://images.cocodataset.org/zips/train2014.zip', extract = True)
PATH = os.path.dirname(image_zip) + image_folder
os.remove(image_zip)
else:
PATH = os.path.abspath('.') + image_folder
# 선택사항 : 훈련 세트의 크기 제한(30,000개의 캡션과 해당 이미지의 하위 집합을 사용하여 모델 교육)
with open(annotation_file, 'r') as f: # NameError: name 'annotation_file' is not defined > 32 에 else 추가
annotations = json.load(f)
# Group all captions together having the same image ID.
image_path_to_caption = collections.defaultdict(list)
for val in annotations['annotations']:
caption = f"<start> {val['caption']} <end>"
image_path = PATH + 'COCO_train2014_' + '%012d.jpg' % (val['image_id'])
image_path_to_caption[image_path].append(caption)
image_paths = list(image_path_to_caption.keys())
random.shuffle(image_paths)
# Select the first 6000 image_paths from the shuffled set.
# Approximately each image id has 5 captions associated with it, so that will lead to
# 30,000 examples
train_image_paths = image_paths[:6000]
print(len(train_image_paths))
train_captions = []
img_name_vector = []
for image_path in train_image_paths:
caption_list = image_path_to_caption[image_path]
train_captions.extend(caption_list)
img_name_vector.extend([image_path] * len(caption_list))
print(train_captions[0])
image = Image.open(img_name_vector[0])
image.show() # added
# InceptionV3 를 사용하여 이미지 전처리
def load_image(image_path):
img = tf.io.read_file(image_path)
img = tf.image.decode_jpeg(img, channels = 3)
img = tf.image.resize(img, (299, 299))
img = tf.keras.applications.inception_v3.preprocess_input(img)
return img, image_path
# InceptionV3 를 초기화하고 사전 훈련된 Imagenet 가중치 로드
image_model = tf.keras.applications.InceptionV3(include_top = False, weights = 'imagenet')
new_input = image_model.input
hidden_layer = image_model.layers[-1].output
image_features_extract_model = tf.keras.Model(new_input, hidden_layer)
# InceptionV3 에서 추출한 기능 캐싱 - tqdm 사용
from tqdm import tqdm
# get unique images
encode_train = sorted(set(img_name_vector))
# feel free to change batch_size according to your system configuration
image_dataset = tf.data.Dataset.from_tensor_slices(encode_train)
image_dataset = image_dataset.map(load_image, num_parallel_calls = tf.data.AUTOTUNE).batch(16)
for img, path in tqdm(image_dataset): # tqdm 사용. 원래는 for img, path in image_dataset :
batch_features = image_features_extract_model(img)
batch_features = tf.reshape(batch_features,
(batch_features.shape[0], -1, batch_features.shape[3]))
for bf, p in zip(batch_features, path):
path_of_feature = p.numpy().decode('utf-8')
np.save(path_of_feature, bf.numpy())
# 캡션 전처리 및 토큰화
# Find the maximum length of any caption in our dataset
def calc_max_length(tensor):
return max(len(t) for t in tensor)
# Choosing the top 5000 words from the vocabulary
top_k = 5000
tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words = top_k, oov_token = "<unk>",
filters = '!"#$%&()*+.,-/:;=?@[\]^_`{|}~ ')
tokenizer.fit_on_texts(train_captions)
tokenizer.word_index['<pad>'] = 0
tokenizer.index_word[0] = '<pad>'
# Create the tokenized vectors
train_seqs = tokenizer.texts_to_sequences(train_captions)
# Pad each vector to the max_length of the captions
# If you do not provide a max_length value, pad_sequences calculates it automatically
cap_vector = tf.keras.preprocessing.sequence.pad_sequences(train_seqs, padding = 'post')
# Calculates the max_length, which is used to store the attention weights
max_length = calc_max_length(train_seqs)
# 훈련 및 테스트로 데이터 분할
img_to_cap_vector = collections.defaultdict(list)
for img, cap in zip(img_name_vector, cap_vector):
img_to_cap_vector[img].append(cap)
# Create training and validation sets using an 80-20 split randomly.
img_keys = list(img_to_cap_vector.keys())
random.shuffle(img_keys)
slice_index = int(len(img_keys) * 0.8)
img_name_train_keys, img_name_val_keys = img_keys[:slice_index], img_keys[slice_index:]
img_name_train = []
cap_train = []
for imgt in img_name_train_keys:
capt_len = len(img_to_cap_vector[imgt])
img_name_train.extend([imgt] * capt_len)
cap_train.extend(img_to_cap_vector[imgt])
img_name_val = []
cap_val = []
for imgv in img_name_val_keys:
capv_len = len(img_to_cap_vector[imgv])
img_name_val.extend([imgv] * capv_len)
cap_val.extend(img_to_cap_vector[imgv])
print(len(img_name_train), len(cap_train), len(img_name_val), len(cap_val)) # print() added
# 학습용 tf.data 데이터셋 만들기
# Feel free to change these parameters according to your system's configuration
BATCH_SIZE = 64
BUFFER_SIZE = 1000
embedding_dim = 256
units = 512
vocab_size = top_k + 1
num_steps = len(img_name_train) // BATCH_SIZE
# Shape of the vector extracted from InceptionV3 is (64, 2048)
# These two variables represent that vector shape
features_shape = 2048
attention_features_shape = 64
# Load the numpy files
def map_func(img_name, cap):
img_tensor = np.load(img_name.decode('utf-8') + '.npy')
return img_tensor, cap
dataset = tf.data.Dataset.from_tensor_slices((img_name_train, cap_train))
# Use map to load the numpy files in parallel
dataset = dataset.map(lambda item1, item2 : tf.numpy_function(map_func, [item1, item2],
[tf.float32, tf.int32]), num_parallel_calls = tf.data.AUTOTUNE)
# Shuffle and batch
dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
dataset = dataset.prefetch(buffer_size = tf.data.AUTOTUNE)
# 모델 : 디코더는 신경망 기계 번역에 대한 예제의 디코더와 동일...하다는 데 코드레벨로는 다르다.
class BahdanauAttention(tf.keras.Model):
def __init__(self, units):
super(BahdanauAttention, self).__init__()
self.W1 = tf.keras.layers.Dense(units)
self.W2 = tf.keras.layers.Dense(units)
self.V = tf.keras.layers.Dense(1)
def call(self, features, hidden):
# features(CNN_encoder output) shape == (batch_size, 64, embedding_dim)
# hidden shape == (batch_size, hidden_size)
# hidden_with_time_axis shape == (batch_size, 1, hidden_size)
hidden_with_time_axis = tf.expand_dims(hidden, 1)
# attention_hidden_layer shape == (batch_size, 64, units)
attention_hidden_layer = (tf.nn.tanh(self.W1(features) + self.W2(hidden_with_time_axis)))
# score shape == (batch_size, 64, 1)
# This gives you an unnormalized score for each image feature
score = self.V(attention_hidden_layer)
# attention_weights shape == (batch_size, 64, 1)
attention_weights = tf.nn.softmax(score, axis = 1)
# context_vector shape after sum == (batch_size, hidden_size)
context_vector = attention_weights * features
context_vector = tf.reduce_sum(context_vector, axis = 1)
return context_vector, attention_weights
class CNN_Encoder(tf.keras.Model):
# Since you have already extracted the features and dumped it using pickle(who? where? when?)
# This encoder passes those freatures through a Fully connected layer
def __init__(self, embedding_dim):
super(CNN_Encoder, self).__init__()
# shape after fc == (batch_size, 64, embedding_dim)
self.fc = tf.keras.layers.Dense(embedding_dim)
def call(self, x):
x = self.fc(x)
x = tf.nn.relu(x)
return x
class RNN_Decoder(tf.keras.Model):
def __init__(self, embedding_dim, units, vocab_size):
super(RNN_Decoder, self).__init__()
self.units = units
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.gru = tf.keras.layers.GRU(self.units, return_sequences = True, return_state = True,
recurrent_initializer = 'glorot_uniform')
self.fc1 = tf.keras.layers.Dense(self.units)
self.fc2 = tf.keras.layers.Dense(vocab_size)
self.attention = BahdanauAttention(self.units)
def call(self, x, features, hidden):
# defining attention as a separate model
context_vector, attention_weights = self.attention(features, hidden)
# x shape after passing through embedding == (batch_size, 1, embedding_dim)
x = self.embedding(x)
# x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)
x = tf.concat([tf.expand_dims(context_vector, 1), x], axis = -1)
# passing the concatenated vector to the GRU
output, state = self.gru(x)
# shape == (batch_szie, max_length, hidden_size)
x = self.fc1(output)
# x shape == (batch_size * max_length, hidden_size)
x = tf.reshape(x, (-1, x.shape[2]))
# output shape == (batch_size * max_length, vocab)
x = self.fc2(x)
return x, state, attention_weights
def reset_state(self, batch_size):
return tf.zeros((batch_size, self.units))
encoder = CNN_Encoder(embedding_dim)
decoder = RNN_Decoder(embedding_dim, units, vocab_size)
optimizer = tf.keras.optimizers.Adam()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = True, reduction = 'none')
def loss_function(real, pred):
mask = tf.math.logical_not(tf.math.equal(real, 0))
loss_ = loss_object(real, pred)
mask = tf.cast(mask, dtype = loss_.dtype)
loss_ *= mask
return tf.reduce_mean(loss_)
# 검문소(? checkpoint 로 추정)
checkpoint_path = './checkpoints/train/'
ckpt = tf.train.Checkpoint(encoder = encoder, decoder = decoder, optimizer = optimizer)
ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep = 5)
start_epoch = 0
if ckpt_manager.latest_checkpoint:
start_epoch = int(ckpt_manager.latest_checkpoint.split('-')[-1])
# restoring the latest checkpoint in checkpoint_path
ckpt.restore(ckpt_manager.latest_checkpoint)
# 훈련
# adding this in a separate cell because if you run the training cell many times, the loss_plot
# array will be reset
loss_plot = []
@tf.function
def train_step(img_tensor, target):
loss = 0
# initializing the hidden state for each batch because the cations are not related from imge to imge
hidden = decoder.reset_state(batch_size = target.shape[0])
dec_input = tf.expand_dims([tokenizer.word_index['<start>']] * target.shape[0], 1)
with tf.GradientTape() as tape:
features = encoder(img_tensor)
for i in range(1, target.shape[1]):
# passing the features through the decoder
predictions, hidden, _ = decoder(dec_input, features, hidden)
loss += loss_function(target[:, i], predictions)
# using teacher forcing
dec_input = tf.expand_dims(target[:, i], 1)
total_loss = (loss / int(target.shape[1]))
trainable_variables = encoder.trainable_variables + decoder.trainable_variables
gradients = tape.gradient(loss, trainable_variables)
optimizer.apply_gradients(zip(gradients, trainable_variables))
return loss, total_loss
EPOCHS = 20
for epoch in range(start_epoch, EPOCHS):
start = time.time()
total_loss = 0
for (batch, (img_tensor, target)) in enumerate(dataset):
batch_loss, t_loss = train_step(img_tensor, target)
total_loss += t_loss
if batch % 100 == 0:
print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1, batch,
batch_loss.numpy() / int(target.shape[1])))
# storing the epoch end loss value to plot later
loss_plot.append(total_loss / num_steps)
if epoch % 5 == 0:
ckpt_manager.save()
print('Epoch {} Loss {:.6f}'.format(epoch + 1, total_loss / num_steps))
print('Time taken for 1 epoch {} sec\n'.format(time.time() - start))
plt.plot(loss_plot)
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Loss Plot')
plt.show()
# 표제!(...? > 영문판에는 Caption! 으로 나옴)
def evaluate(image):
attention_plot = np.zeros((max_length, attention_features_shape))
hidden = decoder.reset_state(batch_size = 1)
temp_input = tf.expand_dims(load_image(image)[0], 0)
img_tensor_val = image_features_extract_model(temp_input)
img_tensor_val = tf.reshape(img_tensor_val, (img_tensor_val.shape[0], -1,
img_tensor_val.shape[3]))
features = encoder(img_tensor_val)
dec_input = tf.expand_dims([tokenizer.word_index['<start>']], 0)
result = []
for i in range(max_length):
predictions, hidden, attention_weights = decoder(dec_input, features, hidden)
attention_plot[i] = tf.reshape(attention_weights, (-1,)).numpy()
predicted_id = tf.random.categorical(predictions, 1)[0][0].numpy()
result.append(tokenizer.index_word[predicted_id])
if tokenizer.index_word[predicted_id] == '<end>':
return result, attention_plot
dec_input = tf.expand_dims([predicted_id], 0)
attention_plot = attention_plot[:len(result), :]
return result, attention_plot
def plot_attention(image, result, attention_plot):
temp_image = np.array(Image.open(image))
fig = plt.figure(figsize = (10, 10))
len_result = len(result)
for l in range(len_result):
temp_att = np.resize(attention_plot[i], (8, 8))
ax = fig.add_subplot(len_result // 2, len_result // 2, l+1)
ax.set_title(result[l])
img = ax.imshow(temp_image)
ax.imshow(temp_att, cmap = 'grey', alpha = 0.6, extent = img.get_extent())
plt.tight_layout()
plt.show()
# captions on the validation set
rid = np.random.randint(0, len(img_name_val))
image = img_name_val[rid]
real_caption = ' '.join([tokenizer.index_word[i] for i in cap_val[rid] if i not in [0]])
result, attention_plot = evaluate(image)
print('Real Caption: ', real_caption)
print('Prediction Caption: ', ' '.join(result))
plot_attention(image, result, attention_plot)
# 자신의 이미지에 사용하기
imge_url = 'https://tensorflow.org/images/surf.jpg'
image_extension = image_url[-4:]
image_path = tf.keras.utils.get_file('image' + image_extension, origin = image_url)
result, attention_plot = evaluate(image_path)
print('Prediction Caption:', ' '.join(result))
plot_attention(image_path, result, attention_plot)
# opening the image
image = Image.open(image_path) # image = added
image.show() # added