forked from hhrutter/tiff
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreader.go
839 lines (777 loc) · 21.1 KB
/
reader.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package tiff is an enhanced version of x/image/tiff.
//
// It uses a consolidated version of compress/lzw (https://github.com/hhrutter/lzw) for compression and also adds support for CMYK.
//
// More information: https://github.com/hhrutter/tiff
package tiff
import (
"bytes"
"compress/zlib"
"encoding/binary"
"fmt"
"image"
"image/color"
"image/draw"
"image/jpeg"
"io"
"io/ioutil"
"math"
"github.com/hhrutter/lzw"
"golang.org/x/image/ccitt"
)
// A FormatError reports that the input is not a valid TIFF image.
type FormatError string
func (e FormatError) Error() string {
return "tiff: invalid format: " + string(e)
}
// An UnsupportedError reports that the input uses a valid but
// unimplemented feature.
type UnsupportedError string
func (e UnsupportedError) Error() string {
return "tiff: unsupported feature: " + string(e)
}
var errNoPixels = FormatError("not enough pixel data")
type decoder struct {
r io.ReaderAt
byteOrder binary.ByteOrder
config image.Config
mode imageMode
bpp uint
features map[int][]uint
palette []color.Color
buf []byte
off int // Current offset in buf.
v uint32 // Buffer value for reading with arbitrary bit depths.
nbits uint // Remaining number of bits in v.
tJPEG []byte // Store JPEGTables data
tmp image.Image // Store temporary jpeg image
}
// firstVal returns the first uint of the features entry with the given tag,
// or 0 if the tag does not exist.
func (d *decoder) firstVal(tag int) uint {
f := d.features[tag]
if len(f) == 0 {
return 0
}
return f[0]
}
// ifdUint decodes the IFD entry in p, which must be of the Byte, Short
// or Long type, and returns the decoded uint values.
func (d *decoder) ifdUint(p []byte) (u []uint, err error) {
var raw []byte
if len(p) < ifdLen {
return nil, FormatError("bad IFD entry")
}
tag := d.byteOrder.Uint16(p[0:2])
datatype := d.byteOrder.Uint16(p[2:4])
if dt := int(datatype); (dt <= 0 || dt >= len(lengths)) && tag != tJPEG {
return nil, UnsupportedError("IFD entry datatype")
}
// tJPEG's type is dtUndefined which size is same as dtByte.
var length uint32
if tag != tJPEG {
length = lengths[datatype]
} else {
length = 1
}
count := d.byteOrder.Uint32(p[4:8])
if count > math.MaxInt32/length {
return nil, FormatError("IFD data too large")
}
if datalen := length * count; datalen > 4 {
// The IFD contains a pointer to the real value.
raw = make([]byte, datalen)
_, err = d.r.ReadAt(raw, int64(d.byteOrder.Uint32(p[8:12])))
} else {
raw = p[8 : 8+datalen]
}
if err != nil {
return nil, err
}
u = make([]uint, count)
switch datatype {
case dtByte, dtUndefined:
for i := uint32(0); i < count; i++ {
u[i] = uint(raw[i])
}
case dtShort:
for i := uint32(0); i < count; i++ {
u[i] = uint(d.byteOrder.Uint16(raw[2*i : 2*(i+1)]))
}
case dtLong:
for i := uint32(0); i < count; i++ {
u[i] = uint(d.byteOrder.Uint32(raw[4*i : 4*(i+1)]))
}
default:
return nil, UnsupportedError("data type")
}
return u, nil
}
// parseIFD decides whether the the IFD entry in p is "interesting" and
// stows away the data in the decoder. It returns the tag number of the
// entry and an error, if any.
func (d *decoder) parseIFD(p []byte) (int, error) {
tag := d.byteOrder.Uint16(p[0:2])
switch tag {
case tBitsPerSample,
tExtraSamples,
tPhotometricInterpretation,
tCompression,
tPredictor,
tStripOffsets,
tStripByteCounts,
tRowsPerStrip,
tTileWidth,
tTileLength,
tTileOffsets,
tTileByteCounts,
tImageLength,
tImageWidth,
tFillOrder,
tT4Options,
tT6Options,
tJPEG:
val, err := d.ifdUint(p)
if err != nil {
return 0, err
}
d.features[int(tag)] = val
case tColorMap:
val, err := d.ifdUint(p)
if err != nil {
return 0, err
}
numcolors := len(val) / 3
if len(val)%3 != 0 || numcolors <= 0 || numcolors > 256 {
return 0, FormatError("bad ColorMap length")
}
d.palette = make([]color.Color, numcolors)
for i := 0; i < numcolors; i++ {
d.palette[i] = color.RGBA64{
uint16(val[i]),
uint16(val[i+numcolors]),
uint16(val[i+2*numcolors]),
0xffff,
}
}
case tSampleFormat:
// Page 27 of the spec: If the SampleFormat is present and
// the value is not 1 [= unsigned integer data], a Baseline
// TIFF reader that cannot handle the SampleFormat value
// must terminate the import process gracefully.
val, err := d.ifdUint(p)
if err != nil {
return 0, err
}
for _, v := range val {
if v != 1 {
return 0, UnsupportedError("sample format")
}
}
}
return int(tag), nil
}
// readBits reads n bits from the internal buffer starting at the current offset.
func (d *decoder) readBits(n uint) (v uint32, ok bool) {
for d.nbits < n {
d.v <<= 8
if d.off >= len(d.buf) {
return 0, false
}
d.v |= uint32(d.buf[d.off])
d.off++
d.nbits += 8
}
d.nbits -= n
rv := d.v >> d.nbits
d.v &^= rv << d.nbits
return rv, true
}
// flushBits discards the unread bits in the buffer used by readBits.
// It is used at the end of a line.
func (d *decoder) flushBits() {
d.v = 0
d.nbits = 0
}
// minInt returns the smaller of x or y.
func minInt(a, b int) int {
if a <= b {
return a
}
return b
}
// decode decodes the raw data of an image.
// It reads from d.buf and writes the strip or tile into dst.
func (d *decoder) decode(dst image.Image, xmin, ymin, xmax, ymax int) error {
d.off = 0
// Apply horizontal predictor if necessary.
// In this case, p contains the color difference to the preceding pixel.
// See page 64-65 of the spec.
if d.firstVal(tPredictor) == prHorizontal {
switch d.bpp {
case 16:
var off int
n := 2 * len(d.features[tBitsPerSample]) // bytes per sample times samples per pixel
for y := ymin; y < ymax; y++ {
off += n
for x := 0; x < (xmax-xmin-1)*n; x += 2 {
if off+2 > len(d.buf) {
return errNoPixels
}
v0 := d.byteOrder.Uint16(d.buf[off-n : off-n+2])
v1 := d.byteOrder.Uint16(d.buf[off : off+2])
d.byteOrder.PutUint16(d.buf[off:off+2], v1+v0)
off += 2
}
}
case 8:
var off int
n := 1 * len(d.features[tBitsPerSample]) // bytes per sample times samples per pixel
for y := ymin; y < ymax; y++ {
off += n
for x := 0; x < (xmax-xmin-1)*n; x++ {
if off >= len(d.buf) {
return errNoPixels
}
d.buf[off] += d.buf[off-n]
off++
}
}
case 1:
return UnsupportedError("horizontal predictor with 1 BitsPerSample")
}
}
rMaxX := minInt(xmax, dst.Bounds().Max.X)
rMaxY := minInt(ymax, dst.Bounds().Max.Y)
switch d.mode {
case mGray, mGrayInvert:
if d.bpp == 16 {
img := dst.(*image.Gray16)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
if d.off+2 > len(d.buf) {
return errNoPixels
}
v := d.byteOrder.Uint16(d.buf[d.off : d.off+2])
d.off += 2
if d.mode == mGrayInvert {
v = 0xffff - v
}
img.SetGray16(x, y, color.Gray16{v})
}
if rMaxX == img.Bounds().Max.X {
d.off += 2 * (xmax - img.Bounds().Max.X)
}
}
} else {
img := dst.(*image.Gray)
max := uint32((1 << d.bpp) - 1)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
v, ok := d.readBits(d.bpp)
if !ok {
return errNoPixels
}
v = v * 0xff / max
if d.mode == mGrayInvert {
v = 0xff - v
}
img.SetGray(x, y, color.Gray{uint8(v)})
}
d.flushBits()
}
}
case mPaletted:
img := dst.(*image.Paletted)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
v, ok := d.readBits(d.bpp)
if !ok {
return errNoPixels
}
img.SetColorIndex(x, y, uint8(v))
}
d.flushBits()
}
case mRGB:
if d.bpp == 16 {
img := dst.(*image.RGBA64)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
if d.off+6 > len(d.buf) {
return errNoPixels
}
r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2])
g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4])
b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6])
d.off += 6
img.SetRGBA64(x, y, color.RGBA64{r, g, b, 0xffff})
}
}
} else {
img := dst.(*image.RGBA)
for y := ymin; y < rMaxY; y++ {
min := img.PixOffset(xmin, y)
max := img.PixOffset(rMaxX, y)
off := (y - ymin) * (xmax - xmin) * 3
for i := min; i < max; i += 4 {
if off+3 > len(d.buf) {
return errNoPixels
}
img.Pix[i+0] = d.buf[off+0]
img.Pix[i+1] = d.buf[off+1]
img.Pix[i+2] = d.buf[off+2]
img.Pix[i+3] = 0xff
off += 3
}
}
}
case mNRGBA:
if d.bpp == 16 {
img := dst.(*image.NRGBA64)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
if d.off+8 > len(d.buf) {
return errNoPixels
}
r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2])
g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4])
b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6])
a := d.byteOrder.Uint16(d.buf[d.off+6 : d.off+8])
d.off += 8
img.SetNRGBA64(x, y, color.NRGBA64{r, g, b, a})
}
}
} else {
img := dst.(*image.NRGBA)
for y := ymin; y < rMaxY; y++ {
min := img.PixOffset(xmin, y)
max := img.PixOffset(rMaxX, y)
i0, i1 := (y-ymin)*(xmax-xmin)*4, (y-ymin+1)*(xmax-xmin)*4
if i1 > len(d.buf) {
return errNoPixels
}
copy(img.Pix[min:max], d.buf[i0:i1])
}
}
case mRGBA:
if d.bpp == 16 {
img := dst.(*image.RGBA64)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
if d.off+8 > len(d.buf) {
return errNoPixels
}
r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2])
g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4])
b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6])
a := d.byteOrder.Uint16(d.buf[d.off+6 : d.off+8])
d.off += 8
img.SetRGBA64(x, y, color.RGBA64{r, g, b, a})
}
}
} else {
img := dst.(*image.RGBA)
for y := ymin; y < rMaxY; y++ {
min := img.PixOffset(xmin, y)
max := img.PixOffset(rMaxX, y)
i0, i1 := (y-ymin)*(xmax-xmin)*4, (y-ymin+1)*(xmax-xmin)*4
if i1 > len(d.buf) {
return errNoPixels
}
copy(img.Pix[min:max], d.buf[i0:i1])
}
}
case mCMYK:
// d.bpp must be 8
img := dst.(*image.CMYK)
for y := ymin; y < rMaxY; y++ {
min := img.PixOffset(xmin, y)
max := img.PixOffset(rMaxX, y)
i0, i1 := (y-ymin)*(xmax-xmin)*4, (y-ymin+1)*(xmax-xmin)*4
if i1 > len(d.buf) {
return errNoPixels
}
copy(img.Pix[min:max], d.buf[i0:i1])
}
}
return nil
}
// decodeJPEG decodes the jpeg data of an image.
func (d *decoder) decodeJPEG(dst image.Image, xmin, ymin, xmax, ymax int) (image.Image, error) {
rMaxX := minInt(xmax, dst.Bounds().Max.X)
rMaxY := minInt(ymax, dst.Bounds().Max.Y)
var img draw.Image
switch d.mode {
case mGray, mGrayInvert:
if d.bpp == 16 {
img = dst.(*image.Gray16)
} else {
img = dst.(*image.Gray)
}
case mPaletted:
img = dst.(*image.Paletted)
case mRGB, mNRGBA, mRGBA:
if d.bpp == 16 {
img = dst.(*image.RGBA64)
} else {
img = dst.(*image.RGBA)
}
case mCMYK:
img = dst.(*image.CMYK)
}
for y := 0; y+ymin < rMaxY; y++ {
for x := 0; x+xmin < rMaxX; x++ {
img.Set(x+xmin, y+ymin, d.tmp.At(x, y))
}
}
return dst, nil
}
func newDecoder(r io.Reader) (*decoder, error) {
d := &decoder{
r: newReaderAt(r),
features: make(map[int][]uint),
}
p := make([]byte, 8)
if _, err := d.r.ReadAt(p, 0); err != nil {
return nil, err
}
switch string(p[0:4]) {
case leHeader:
d.byteOrder = binary.LittleEndian
case beHeader:
d.byteOrder = binary.BigEndian
default:
return nil, FormatError("malformed header")
}
ifdOffset := int64(d.byteOrder.Uint32(p[4:8]))
// The first two bytes contain the number of entries (12 bytes each).
if _, err := d.r.ReadAt(p[0:2], ifdOffset); err != nil {
return nil, err
}
numItems := int(d.byteOrder.Uint16(p[0:2]))
// All IFD entries are read in one chunk.
p = make([]byte, ifdLen*numItems)
if _, err := d.r.ReadAt(p, ifdOffset+2); err != nil {
return nil, err
}
prevTag := -1
for i := 0; i < len(p); i += ifdLen {
tag, err := d.parseIFD(p[i : i+ifdLen])
if err != nil {
return nil, err
}
if tag <= prevTag {
// Don't Check IFD tags order
// return nil, FormatError("tags are not sorted in ascending order")
fmt.Fprint(io.Discard, "tags are not sorted in ascending order")
}
prevTag = tag
}
d.config.Width = int(d.firstVal(tImageWidth))
d.config.Height = int(d.firstVal(tImageLength))
if _, ok := d.features[tBitsPerSample]; !ok {
// Default is 1 per specification.
d.features[tBitsPerSample] = []uint{1}
}
d.bpp = d.firstVal(tBitsPerSample)
switch d.bpp {
case 0:
return nil, FormatError("BitsPerSample must not be 0")
case 1, 8, 16:
// Nothing to do, these are accepted by this implementation.
default:
return nil, UnsupportedError(fmt.Sprintf("BitsPerSample of %v", d.bpp))
}
// Determine the image mode.
switch d.firstVal(tPhotometricInterpretation) {
case pRGB:
if d.bpp == 16 {
for _, b := range d.features[tBitsPerSample] {
if b != 16 {
return nil, FormatError("wrong number of samples for 16bit RGB")
}
}
} else {
for _, b := range d.features[tBitsPerSample] {
if b != 8 {
return nil, FormatError("wrong number of samples for 8bit RGB")
}
}
}
// RGB images normally have 3 samples per pixel.
// If there are more, ExtraSamples (p. 31-32 of the spec)
// gives their meaning (usually an alpha channel).
//
// This implementation does not support extra samples
// of an unspecified type.
switch len(d.features[tBitsPerSample]) {
case 3:
d.mode = mRGB
if d.bpp == 16 {
d.config.ColorModel = color.RGBA64Model
} else {
d.config.ColorModel = color.RGBAModel
}
case 4:
switch d.firstVal(tExtraSamples) {
case 1:
d.mode = mRGBA
if d.bpp == 16 {
d.config.ColorModel = color.RGBA64Model
} else {
d.config.ColorModel = color.RGBAModel
}
case 2:
d.mode = mNRGBA
if d.bpp == 16 {
d.config.ColorModel = color.NRGBA64Model
} else {
d.config.ColorModel = color.NRGBAModel
}
default:
return nil, FormatError("wrong number of samples for RGB")
}
default:
return nil, FormatError("wrong number of samples for RGB")
}
case pPaletted:
d.mode = mPaletted
d.config.ColorModel = color.Palette(d.palette)
case pWhiteIsZero:
d.mode = mGrayInvert
if d.bpp == 16 {
d.config.ColorModel = color.Gray16Model
} else {
d.config.ColorModel = color.GrayModel
}
case pBlackIsZero:
d.mode = mGray
if d.bpp == 16 {
d.config.ColorModel = color.Gray16Model
} else {
d.config.ColorModel = color.GrayModel
}
case pCMYK:
d.mode = mCMYK
if d.bpp == 16 {
return nil, UnsupportedError(fmt.Sprintf("CMYK BitsPerSample of %v", d.bpp))
}
d.config.ColorModel = color.CMYKModel
case pYCbCr:
// image.YCbCr doesn't have Set method, use image.RGBA instead.
d.mode = mRGBA
if d.bpp == 16 {
d.config.ColorModel = color.RGBA64Model
} else {
d.config.ColorModel = color.RGBAModel
}
default:
return nil, UnsupportedError("color model")
}
return d, nil
}
// DecodeConfig returns the color model and dimensions of a TIFF image without
// decoding the entire image.
func DecodeConfig(r io.Reader) (image.Config, error) {
d, err := newDecoder(r)
if err != nil {
return image.Config{}, err
}
return d.config, nil
}
func ccittFillOrder(tiffFillOrder uint) ccitt.Order {
if tiffFillOrder == 2 {
return ccitt.LSB
}
return ccitt.MSB
}
// Decode reads a TIFF image from r and returns it as an image.Image.
// The type of Image returned depends on the contents of the TIFF.
func Decode(r io.Reader) (img image.Image, err error) {
d, err := newDecoder(r)
if err != nil {
return
}
blockPadding := false
blockWidth := d.config.Width
blockHeight := d.config.Height
blocksAcross := 1
blocksDown := 1
if d.config.Width == 0 {
blocksAcross = 0
}
if d.config.Height == 0 {
blocksDown = 0
}
var blockOffsets, blockCounts []uint
if int(d.firstVal(tTileWidth)) != 0 {
blockPadding = true
blockWidth = int(d.firstVal(tTileWidth))
blockHeight = int(d.firstVal(tTileLength))
if blockWidth != 0 {
blocksAcross = (d.config.Width + blockWidth - 1) / blockWidth
}
if blockHeight != 0 {
blocksDown = (d.config.Height + blockHeight - 1) / blockHeight
}
blockCounts = d.features[tTileByteCounts]
blockOffsets = d.features[tTileOffsets]
} else {
if int(d.firstVal(tRowsPerStrip)) != 0 {
blockHeight = int(d.firstVal(tRowsPerStrip))
}
if blockHeight != 0 {
blocksDown = (d.config.Height + blockHeight - 1) / blockHeight
}
blockOffsets = d.features[tStripOffsets]
blockCounts = d.features[tStripByteCounts]
}
// Check if we have the right number of strips/tiles, offsets and counts.
if n := blocksAcross * blocksDown; len(blockOffsets) < n || len(blockCounts) < n {
return nil, FormatError("inconsistent header")
}
imgRect := image.Rect(0, 0, d.config.Width, d.config.Height)
switch d.mode {
case mGray, mGrayInvert:
if d.bpp == 16 {
img = image.NewGray16(imgRect)
} else {
img = image.NewGray(imgRect)
}
case mPaletted:
img = image.NewPaletted(imgRect, d.palette)
case mNRGBA:
if d.bpp == 16 {
img = image.NewNRGBA64(imgRect)
} else {
img = image.NewNRGBA(imgRect)
}
case mRGB, mRGBA:
if d.bpp == 16 {
img = image.NewRGBA64(imgRect)
} else {
img = image.NewRGBA(imgRect)
}
case mCMYK:
img = image.NewCMYK(imgRect)
}
// According to the spec, JPEGTables is an optional field. The purpose of it is to
// predefine JPEG quantization and/or Huffman tables for subsequent use by JPEG image segments.
// Start with SOI marker and end with EOI marker.
if d.firstVal(tCompression) == cJPEG {
d.tJPEG = make([]byte, len(d.features[tJPEG]))
for i := range d.features[tJPEG] {
d.tJPEG[i] = uint8(d.features[tJPEG][i])
}
if l := len(d.tJPEG); l != 0 && l < 4 {
return nil, FormatError("bad JPEGTables field")
}
}
for i := 0; i < blocksAcross; i++ {
blkW := blockWidth
if !blockPadding && i == blocksAcross-1 && d.config.Width%blockWidth != 0 {
blkW = d.config.Width % blockWidth
}
for j := 0; j < blocksDown; j++ {
blkH := blockHeight
if !blockPadding && j == blocksDown-1 && d.config.Height%blockHeight != 0 {
blkH = d.config.Height % blockHeight
}
offset := int64(blockOffsets[j*blocksAcross+i])
n := int64(blockCounts[j*blocksAcross+i])
// LSBToMSB := d.firstVal(tFillOrder) == 2
// order := ccitt.MSB
// if LSBToMSB {
// order = ccitt.LSB
// }
switch d.firstVal(tCompression) {
// According to the spec, Compression does not have a default value,
// but some tools interpret a missing Compression value as none so we do
// the same.
case cNone, 0:
if b, ok := d.r.(*buffer); ok {
d.buf, err = b.Slice(int(offset), int(n))
} else {
d.buf = make([]byte, n)
_, err = d.r.ReadAt(d.buf, offset)
}
case cG3:
inv := d.firstVal(tPhotometricInterpretation) == pWhiteIsZero
order := ccittFillOrder(d.firstVal(tFillOrder))
r := ccitt.NewReader(io.NewSectionReader(d.r, offset, n), order, ccitt.Group3, blkW, blkH, &ccitt.Options{Invert: inv, Align: false})
d.buf, err = ioutil.ReadAll(r)
case cG4:
inv := d.firstVal(tPhotometricInterpretation) == pWhiteIsZero
order := ccittFillOrder(d.firstVal(tFillOrder))
r := ccitt.NewReader(io.NewSectionReader(d.r, offset, n), order, ccitt.Group4, blkW, blkH, &ccitt.Options{Invert: inv, Align: false})
d.buf, err = ioutil.ReadAll(r)
case cLZW:
r := lzw.NewReader(io.NewSectionReader(d.r, offset, n), true)
d.buf, err = ioutil.ReadAll(r)
r.Close()
case cJPEG:
// JPEG image segment should start with SOI marker and end with EOI marker.
b, err := io.ReadAll(io.NewSectionReader(d.r, offset, n))
if err != nil {
return nil, err
}
if len(b) < 4 {
return nil, FormatError("bad JPEG image segment")
}
// Decode as a JPEG image.
d.tmp, err = jpeg.Decode(bytes.NewBuffer(b))
if err != nil {
var buf bytes.Buffer
if len(d.tJPEG) != 0 {
// Write JPEGTables data to buffer without EOI marker.
buf.Write(d.tJPEG[:len(d.tJPEG)-2])
} else {
return nil, err
}
// Write JPEG image segment to buffer without SOI marker.
buf.Write(b[2:])
d.tmp, err = jpeg.Decode(&buf)
if err != nil {
return nil, err
}
}
case cDeflate, cDeflateOld:
var r io.ReadCloser
r, err = zlib.NewReader(io.NewSectionReader(d.r, offset, n))
if err != nil {
return nil, err
}
d.buf, err = ioutil.ReadAll(r)
r.Close()
case cPackBits:
d.buf, err = unpackBits(io.NewSectionReader(d.r, offset, n))
default:
err = UnsupportedError(fmt.Sprintf("compression value %d", d.firstVal(tCompression)))
}
if err != nil {
return nil, err
}
xmin := i * blockWidth
ymin := j * blockHeight
xmax := xmin + blkW
ymax := ymin + blkH
if d.firstVal(tCompression) == cJPEG {
img, err = d.decodeJPEG(img, xmin, ymin, xmax, ymax)
} else {
err = d.decode(img, xmin, ymin, xmax, ymax)
}
if err != nil {
return nil, err
}
}
}
return
}
func init() {
image.RegisterFormat("tiff", leHeader, Decode, DecodeConfig)
image.RegisterFormat("tiff", beHeader, Decode, DecodeConfig)
}