forked from Redaimao/PyTorchZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path13_3_char_rnn.py
147 lines (107 loc) · 4.29 KB
/
13_3_char_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# https://github.com/spro/practical-pytorch
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from text_loader import TextDataset
hidden_size = 100
n_layers = 3
batch_size = 1
n_epochs = 100
n_characters = 128 # ASCII
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size, n_layers=1):
super(RNN, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, n_layers)
self.linear = nn.Linear(hidden_size, output_size)
# This runs this one step at a time
# It's extremely slow, and please do not use in practice.
# We need to use (1) batch and (2) data parallelism
def forward(self, input, hidden):
embed = self.embedding(input.view(1, -1)) # S(=1) x I
embed = embed.view(1, 1, -1) # S(=1) x B(=1) x I (embedding size)
output, hidden = self.gru(embed, hidden)
output = self.linear(output.view(1, -1)) # S(=1) x I
return output, hidden
def init_hidden(self):
if torch.cuda.is_available():
hidden = torch.zeros(self.n_layers, 1, self.hidden_size).cuda()
else:
hidden = torch.zeros(self.n_layers, 1, self.hidden_size)
return Variable(hidden)
def str2tensor(string):
tensor = [ord(c) for c in string]
tensor = torch.LongTensor(tensor)
if torch.cuda.is_available():
tensor = tensor.cuda()
return Variable(tensor)
def generate(decoder, prime_str='A', predict_len=100, temperature=0.8):
hidden = decoder.init_hidden()
prime_input = str2tensor(prime_str)
predicted = prime_str
# Use priming string to "build up" hidden state
for p in range(len(prime_str) - 1):
_, hidden = decoder(prime_input[p], hidden)
inp = prime_input[-1]
for p in range(predict_len):
output, hidden = decoder(inp, hidden)
# Sample from the network as a multinomial distribution
output_dist = output.data.view(-1).div(temperature).exp()
top_i = torch.multinomial(output_dist, 1)[0]
# Add predicted character to string and use as next input
predicted_char = chr(top_i)
predicted += predicted_char
inp = str2tensor(predicted_char)
return predicted
# Train for a given src and target
# It feeds single string to demonstrate seq2seq
# It's extremely slow, and we need to use (1) batch and (2) data parallelism
# http://pytorch.org/tutorials/beginner/former_torchies/parallelism_tutorial.html.
def train_teacher_forching(line):
input = str2tensor(line[:-1])
target = str2tensor(line[1:])
hidden = decoder.init_hidden()
loss = 0
for c in range(len(input)):
output, hidden = decoder(input[c], hidden)
loss += criterion(output, target[c])
decoder.zero_grad()
loss.backward()
decoder_optimizer.step()
return loss.data[0] / len(input)
def train(line):
input = str2tensor(line[:-1])
target = str2tensor(line[1:])
hidden = decoder.init_hidden()
decoder_in = input[0]
loss = 0
for c in range(len(input)):
output, hidden = decoder(decoder_in, hidden)
loss += criterion(output, target[c])
decoder_in = output.max(1)[1]
decoder.zero_grad()
loss.backward()
decoder_optimizer.step()
return loss.data[0] / len(input)
if __name__ == '__main__':
decoder = RNN(n_characters, hidden_size, n_characters, n_layers)
if torch.cuda.is_available():
decoder.cuda()
decoder_optimizer = torch.optim.Adam(decoder.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
train_loader = DataLoader(dataset=TextDataset(),
batch_size=batch_size,
shuffle=True)
print("Training for %d epochs..." % n_epochs)
for epoch in range(1, n_epochs + 1):
for i, (lines, _) in enumerate(train_loader):
loss = train(lines[0]) # Batch size is 1
if i % 100 == 0:
print('[(%d %d%%) loss: %.4f]' %
(epoch, epoch / n_epochs * 100, loss))
print(generate(decoder, 'Wh', 100), '\n')