forked from Redaimao/PyTorchZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path14_1_seq2seq.py
121 lines (92 loc) · 3.68 KB
/
14_1_seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# https://github.com/spro/practical-pytorch/blob/master/seq2seq-translation/seq2seq-translation.ipynb
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from text_loader import TextDataset
import seq2seq_models as sm
from seq2seq_models import str2tensor, EOS_token, SOS_token
HIDDEN_SIZE = 100
N_LAYERS = 1
BATCH_SIZE = 1
N_EPOCH = 100
N_CHARS = 128 # ASCII
# Simple test to show how our network works
def test():
encoder_hidden = encoder.init_hidden()
word_input = str2tensor('hello')
encoder_outputs, encoder_hidden = encoder(word_input, encoder_hidden)
print(encoder_outputs)
decoder_hidden = encoder_hidden
word_target = str2tensor('pytorch')
for c in range(len(word_target)):
decoder_output, decoder_hidden = decoder(
word_target[c], decoder_hidden)
print(decoder_output.size(), decoder_hidden.size())
# Train for a given src and target
# To demonstrate seq2seq, We don't handle batch in the code,
# and our encoder runs this one step at a time
# It's extremely slow, and please do not use in practice.
# We need to use (1) batch and (2) data parallelism
# http://pytorch.org/tutorials/beginner/former_torchies/parallelism_tutorial.html.
def train(src, target):
src_var = str2tensor(src)
target_var = str2tensor(target, eos=True) # Add the EOS token
encoder_hidden = encoder.init_hidden()
encoder_outputs, encoder_hidden = encoder(src_var, encoder_hidden)
hidden = encoder_hidden
loss = 0
for c in range(len(target_var)):
# First, we feed SOS
# Others, we use teacher forcing
token = target_var[c - 1] if c else str2tensor(SOS_token)
output, hidden = decoder(token, hidden)
loss += criterion(output, target_var[c])
encoder.zero_grad()
decoder.zero_grad()
loss.backward()
optimizer.step()
return loss.data[0] / len(target_var)
# Translate the given input
def translate(enc_input='thisissungkim.iloveyou.', predict_len=100, temperature=0.9):
input_var = str2tensor(enc_input)
encoder_hidden = encoder.init_hidden()
encoder_outputs, encoder_hidden = encoder(input_var, encoder_hidden)
hidden = encoder_hidden
predicted = ''
dec_input = str2tensor(SOS_token)
for c in range(predict_len):
output, hidden = decoder(dec_input, hidden)
# Sample from the network as a multi nominal distribution
output_dist = output.data.view(-1).div(temperature).exp()
top_i = torch.multinomial(output_dist, 1)[0]
# Stop at the EOS
if top_i is EOS_token:
break
predicted_char = chr(top_i)
predicted += predicted_char
dec_input = str2tensor(predicted_char)
return enc_input, predicted
encoder = sm.EncoderRNN(N_CHARS, HIDDEN_SIZE, N_LAYERS)
decoder = sm.DecoderRNN(HIDDEN_SIZE, N_CHARS, N_LAYERS)
if torch.cuda.is_available():
decoder.cuda()
encoder.cuda()
print(encoder, decoder)
test()
params = list(encoder.parameters()) + list(decoder.parameters())
optimizer = torch.optim.Adam(params, lr=0.001)
criterion = nn.CrossEntropyLoss()
train_loader = DataLoader(dataset=TextDataset(),
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=2)
print("Training for %d epochs..." % N_EPOCH)
for epoch in range(1, N_EPOCH + 1):
# Get srcs and targets from data loader
for i, (srcs, targets) in enumerate(train_loader):
train_loss = train(srcs[0], targets[0]) # Batch is 1
if i % 100 is 0:
print('[(%d %d%%) %.4f]' %
(epoch, epoch / N_EPOCH * 100, train_loss))
print(translate(srcs[0]), '\n')
print(translate(), '\n')