-
Notifications
You must be signed in to change notification settings - Fork 0
/
make_test_reports.py
executable file
·337 lines (256 loc) · 17.4 KB
/
make_test_reports.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#!/bin/python3
'''
This script tests parameter sensitivity
if changed in calibration.cal
Author : Celray James CHAWANDA
Email : celray.chawanda@outlook.com
Licence : MIT
Repo : https://github.com/celray
Date : 2023-05-23
'''
# imports
from cjfx import *
from modules import samples_runner, summary_plot
ignore_warnings()
if __name__ == "__main__":
# set default working directory to the script location
os.chdir(os.path.dirname(__file__))
# variables
out_dir = create_path('./output/') # output directory
summary_fig_dir = create_path(f'./{out_dir}/summary-figures/') # summary figures directory
executable_path = "./executables/SWATPlus64_linux" # replace with your executable path
txtinout = "./models/07020011_Lesueur" # SWAT+ txtinout directory, you can add your own here
revision = "Rev 60.5.7"
rev_date = "25/05/2023"
case_details = "This is an axample case study."
dict_data_archive = []
dict_data_archive_nses = []
batches = [
["HRU Tile and Field Parameters", "./inputs/hru_parameters-tile-and-fld.csv", "./inputs/hru_tracked_outputs-tile-and-fld.csv"],
["General HRU Water Balance Parameters", "./inputs/hru_parameters-wb.csv", "./inputs/hru_tracked_outputs-wb.csv"],
["HRU Water Quality Parameters", "./inputs/hru_parameters-wq.csv", "./inputs/hru_tracked_outputs-wq.csv"], # Check against channel and include Organic Nitrogen
["Aquifer Parameters", "./inputs/aqu_parameters.csv", "./inputs/aqu_tracked_outputs.csv"],
["BSN Parameters (Part 1)", "./inputs/bsn_parameters_1.csv", "./inputs/bsn_tracked_outputs.csv"],
["BSN Parameters (Part 2)", "./inputs/bsn_parameters_2.csv", "./inputs/bsn_tracked_outputs.csv"],
]
# make change_types for report
change_types = {}
for batch in batches:
for index, row in pandas.read_csv(batch[1]).iterrows():
change_types[row["ParName"]] = row["Change_Type"]
for batch in batches:
dict_data, dict_data_nses = samples_runner.get_data(batch[1], txtinout, os.path.dirname(__file__), batch[2], os.path.abspath(executable_path))
dict_data_archive.append(dict_data)
dict_data_archive_nses.append(dict_data_nses)
Done = summary_plot.make_plot(dict_data, f'{summary_fig_dir}/hru-{batch[0]}.png', ncols=7,)
doc = word_document(f"{out_dir}/documents/report.docx")
doc2 = word_document(f"{out_dir}/documents/report-extended.docx")
doc.add_heading(f"Report for Tests on {revision} ({rev_date})", level=1)
doc2.add_heading(f"Report for Tests on {revision} ({rev_date})", level=1)
doc.add_paragraph(f"This report (generated on {datetime.date.today()}) highlights which parameters are sensitive if changed via direct means vs if changed via calibration.cal. It also highlights which parameters are disconnected (dummy).")
doc2.add_paragraph(f"This report (generated on {datetime.date.today()}) highlights which parameters are sensitive if changed via direct means vs if changed via calibration.cal. It also highlights which parameters are disconnected (dummy).")
doc.add_paragraph(f"Note that these results might have been influenced by the choice of the case study used in the study. {case_details}")
doc2.add_paragraph(f"Note that these results might have been influenced by the choice of the case study used in the study. {case_details}")
doc.add_paragraph("Of all parameters tested, the following list highlights which parameters might have problems:")
doc2.add_paragraph("Of all parameters tested, the following list highlights which parameters might have problems:")
for i in range(0, len(batches)):
is_batch_added = False
for par in dict_data_archive[i]:
has_issue = False
sensitive_cal = True
sensitive_dir = True
different_dir_cal = False
cal_file_track = []
direct_track = []
for tracked_out in dict_data_archive[i][par]:
if not dict_data_archive[i][par][tracked_out]["Equal"]:
different_dir_cal = True
cal_file_track.append(dict_data_archive[i][par][tracked_out]["Cal File"])
direct_track.append(dict_data_archive[i][par][tracked_out]["Direct"])
if (len(list(set(cal_file_track))) == 1) and (list(set(cal_file_track))[0] == False):
sensitive_cal = False
if (len(list(set(direct_track))) == 1) and (list(set(direct_track))[0] == False):
sensitive_dir = False
if (not sensitive_cal) or (not sensitive_dir) or (different_dir_cal):
has_issue = True
if has_issue:
if not is_batch_added:
doc.add_paragraph(f"")
doc2.add_paragraph(f"")
doc.add_text(f"{batches[i][0]}", italic=True)
doc2.add_text(f"{batches[i][0]}", italic=True)
is_batch_added = True
doc.add_list_item()
doc.add_text(f"{par} :", bold=True)
doc2.add_list_item()
doc2.add_text(f"{par} :", bold=True)
if not sensitive_cal:
doc.add_text(' not sensitive with calibration.cal')
doc2.add_text(' not sensitive with calibration.cal')
if not sensitive_dir:
if not sensitive_cal:
doc.add_text(', not sensitive with direct changes')
doc2.add_text(', not sensitive with direct changes')
else:
doc.add_text(' not sensitive with direct changes')
doc2.add_text(' not sensitive with direct changes')
if different_dir_cal:
if (not sensitive_cal) or (not sensitive_dir):
doc.add_text(', calibration.cal results are different from direct change results')
doc2.add_text(', calibration.cal results are different from direct change results')
else:
doc.add_text(' calibration.cal results are different from direct change results')
doc2.add_text(' calibration.cal results are different from direct change results')
count = 0
figures_number = 1
figures_number_extended = 1
for i in range(0, len(batches)):
count += 1
var_lookup = {}
for index, row in pandas.read_csv(batches[i][2]).iterrows():
var_lookup[row.f_varname] = row.varname
doc.add_heading(f"{count}. {batches[i][0]}")
doc.add_paragraph("The parameters considered include the following: ")
doc.add_text(", ".join(pandas.read_csv(batches[i][1])['ParName'].to_list()), italic=True)
doc.add_heading("Summary", level=3)
doc.add_paragraph(f"Figure {figures_number} provides a summary of how calibration using direct manipulation of input files vs changing the calibration.cal compares for")
doc.add_text(f" {batches[i][0]}", italic=True)
doc.add_image(f'{summary_fig_dir}/hru-{batches[i][0]}.png', 16)
doc.add_paragraph()
doc.add_text(f"Figure {figures_number}: summary parameter sensitivity for {batches[i][0]}", italic=True)
doc2.add_heading(f"{count}. {batches[i][0]}")
doc2.add_paragraph("The parameters considered include the following: ")
doc2.add_text(", ".join(pandas.read_csv(batches[i][1])['ParName'].to_list()), italic=True)
doc2.add_heading("Summary", level=3)
doc2.add_paragraph(f"Figure {figures_number_extended} provides a summary of how calibration using direct manipulation of input files vs changing the calibration.cal compares for")
doc2.add_text(f" {batches[i][0]}", italic=True)
doc2.add_image(f'{summary_fig_dir}/hru-{batches[i][0]}.png', 17)
doc2.add_paragraph()
doc2.add_text(f"Figure {figures_number_extended}: summary parameter sensitivity for {batches[i][0]}.", italic=True)
figures_number += 1
figures_number_extended += 1
doc.add_heading("Details", level=3); doc2.add_heading("Details", level=3)
for i in range(0, len(batches)):
var_lookup = {}
for index, row in pandas.read_csv(batches[i][2]).iterrows():
var_lookup[row.f_varname] = row.varname
for par in dict_data_archive[i]:
doc.add_heading(par, level=4); doc2.add_heading(par, level=4)
doc.add_paragraph(); doc2.add_paragraph()
for tracked_out in dict_data_archive[i][par]:
doc.add_text(f"The ")
doc.add_text(f"{tracked_out} ", bold=True, italic=True)
doc.add_text(f"from ")
doc.add_text(f"direct ", italic=True)
doc.add_text(f"{par} ", bold=True, italic=True)
doc.add_text(f"changes is ")
doc2.add_text(f"The ")
doc2.add_text(f"{tracked_out} ", bold=True, italic=True)
doc2.add_text(f"from ")
doc2.add_text(f"direct ", italic=True)
doc2.add_text(f"{par} ", bold=True, italic=True)
doc2.add_text(f"changes is ")
if dict_data_archive[i][par][tracked_out]["Equal"]:
doc.add_text("the same as that from")
doc2.add_text("the same as that from")
doc.add_text(" calibration.cal", italic=True)
doc.add_text(" changes. ")
doc2.add_text(" calibration.cal", italic=True)
doc2.add_text(f" changes (Figure {figures_number_extended}). ")
else:
doc.add_text("NOT", bold=True)
doc.add_text(" the same as that from")
doc2.add_text("NOT", bold=True)
doc2.add_text(" the same as that from")
# more description
doc.add_text(" calibration.cal", italic=True)
doc.add_text(" changes. ")
doc2.add_text(" calibration.cal", italic=True)
doc2.add_text(f" changes (Figure {figures_number_extended}). ")
first_apparent = False
second_apparent = False
third_apparent = False
first_val = dict_data_archive_nses[i][par][tracked_out]["Across"]["First"]
second_val = dict_data_archive_nses[i][par][tracked_out]["Across"]["Second"]
third_val = dict_data_archive_nses[i][par][tracked_out]["Across"]["Third"]
apparent = False
slightly_apparent = []
slightly_apparent_par = []
very_apparent = []
very_apparent_par = []
mark_1 = 0.97
mark_2 = 0.70
if first_val < mark_1:
apparent = True
if first_val > mark_2:
first_apparent = "slightly apparent"
slightly_apparent.append("left")
slightly_apparent_par.append(dict_data_archive_nses[i][par][tracked_out]["ParNames"]["First"].split(':')[0])
else:
first_apparent = "very apparent"
very_apparent.append("left")
very_apparent_par.append(dict_data_archive_nses[i][par][tracked_out]["ParNames"]["First"].split(':')[0])
if second_val < mark_1:
apparent = True
if second_val > mark_2:
second_apparent = "slightly apparent"
slightly_apparent.append("middle")
slightly_apparent_par.append(dict_data_archive_nses[i][par][tracked_out]["ParNames"]["Second"].split(':')[0])
else:
second_apparent = "very apparent"
very_apparent.append("middle")
very_apparent_par.append(dict_data_archive_nses[i][par][tracked_out]["ParNames"]["Second"].split(':')[0])
if third_val < mark_1:
apparent = True
if third_val > mark_2:
third_apparent = "slightly apparent"
slightly_apparent.append("right")
slightly_apparent_par.append(dict_data_archive_nses[i][par][tracked_out]["ParNames"]["Third"].split(':')[0])
else:
third_apparent = "very apparent"
very_apparent.append("right")
very_apparent_par.append(dict_data_archive_nses[i][par][tracked_out]["ParNames"]["Third"].split(':')[0])
if len(slightly_apparent) > 0:
if len(slightly_apparent) == 1:
doc.add_text(f" This is slightly apparent in the {slightly_apparent[0]} ({slightly_apparent_par[0]}) plot (Figure {figures_number})")
doc2.add_text(f" This is slightly apparent in the {slightly_apparent[0]} ({slightly_apparent_par[0]}) plot (Figure {figures_number})")
if len(slightly_apparent) == 2:
doc.add_text(f" This is slightly apparent in the {slightly_apparent[0]} ({slightly_apparent_par[0]}) and {slightly_apparent[1]} ({slightly_apparent_par[1]}) plots (Figure {figures_number})")
doc2.add_text(f" This is slightly apparent in the {slightly_apparent[0]} ({slightly_apparent_par[0]}) and {slightly_apparent[1]} ({slightly_apparent_par[1]}) plots (Figure {figures_number})")
if len(slightly_apparent) == 3:
doc.add_text(f" This is slightly apparent in all plots (Figure {figures_number})")
doc2.add_text(f" This is slightly apparent in all plots (Figure {figures_number})")
if len(very_apparent) > 0:
if len(slightly_apparent) > 0:
if len(very_apparent) == 1:
doc.add_text(f" , and very apparent in the {very_apparent[0]} ({very_apparent_par[0]}) plot (Figure {figures_number})")
doc2.add_text(f" , and very apparent in the {very_apparent[0]} ({very_apparent_par[0]}) plot (Figure {figures_number})")
if len(very_apparent) == 2:
doc.add_text(f" , and very apparent in the {very_apparent[0]} ({very_apparent_par[0]}) and {very_apparent[1]} ({very_apparent_par[1]}) plots (Figure {figures_number})")
if len(very_apparent) == 3:
doc.add_text(f" , and very apparent in all plots (Figure {figures_number})")
doc2.add_text(f" , and very apparent in all plots (Figure {figures_number})")
else:
if len(very_apparent) == 1:
doc.add_text(f" This is very apparent in the {very_apparent[0]} ({very_apparent_par[0]}) plot (Figure {figures_number})")
doc2.add_text(f" This is very apparent in the {very_apparent[0]} ({very_apparent_par[0]}) plot (Figure {figures_number})")
if len(very_apparent) == 2:
doc.add_text(f" This is very apparent in the {very_apparent[0]} ({very_apparent_par[0]}) and {very_apparent[1]} ({very_apparent_par[1]}) plots (Figure {figures_number})")
doc2.add_text(f" This is very apparent in the {very_apparent[0]} ({very_apparent_par[0]}) and {very_apparent[1]} ({very_apparent_par[1]}) plots (Figure {figures_number})")
if len(very_apparent) == 3:
doc.add_text(f" This is very apparent in all plots (Figure {figures_number})")
doc2.add_text(f" This is very apparent in all plots (Figure {figures_number})")
if not dict_data_archive[i][par][tracked_out]["Equal"]:
doc.add_image(f'./{out_dir}/par-figures/{par}-{var_lookup[tracked_out]}.png', width_=17)
doc.add_paragraph()
doc.add_text(f"Figure {figures_number}: plots for {tracked_out} for different {par} values (change type is {change_types[par]}).", italic=True)
figures_number += 1
doc.add_paragraph()
doc2.add_image(f'./{out_dir}/par-figures/{par}-{var_lookup[tracked_out]}.png', width_=17)
doc2.add_paragraph()
doc2.add_text(f"Figure {figures_number_extended}: plots for {tracked_out} for different {par} values (change type is {change_types[par]}).", italic=True)
figures_number_extended += 1
doc2.add_paragraph()
doc.set_margins(margin=2); doc2.set_margins(margin=2)
doc.save(); doc2.save()
print()