-
Notifications
You must be signed in to change notification settings - Fork 0
/
Pong.py
208 lines (157 loc) · 6.11 KB
/
Pong.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Implementation of classic arcade game Pong
import simplegui
import random
# initialize globals - pos and vel encode vertical info for paddles
# template included variables
WIDTH = 600
HEIGHT = 400
BALL_RADIUS = 20
PAD_WIDTH = 8
PAD_HEIGHT = 80
HALF_PAD_WIDTH = PAD_WIDTH / 2
HALF_PAD_HEIGHT = PAD_HEIGHT / 2
LEFT = False
RIGHT = True
# added variables
ball_pos = [WIDTH/2, HEIGHT/2]
ball_vel = [0, 0]
paddle1_vel = [0, 0]
paddle2_vel = [0, 0]
paddle1_pos = [0, 0]
paddle2_pos = [0, 0]
score1 = 0
score2 = 0
# initialize ball_pos and ball_vel for new bal in middle of table
# if direction is RIGHT, the ball's velocity is upper right, else upper left
def spawn_ball(direction):
global ball_pos, ball_vel # these are vectors stored as lists
if direction == RIGHT:
ball_vel[0] = random.randrange(120, 241)/60
ball_vel[1] = - (random.randrange(60, 181)/60)
elif direction == LEFT:
ball_vel[0] = - (random.randrange(120, 241)/60)
ball_vel[1] = -(random.randrange(60, 181)/60)
# define event handlers
def new_game():
global paddle1_pos, paddle2_pos, paddle1_vel, paddle2_vel # these are numbers
global score1, score2 # these are ints
score1 = 0
score2 = 0
ball_pos [0] = WIDTH/2
ball_pos [1] = HEIGHT/2
spawn_ball(random.choice([LEFT, RIGHT]))
def draw(canvas):
global score1, score2, paddle1_pos, paddle2_pos, ball_pos, ball_vel
# draw mid line and gutters
# midlines
canvas.draw_line([WIDTH / 2, 0],[WIDTH / 2, HEIGHT], 1, "White")
# left gutter
canvas.draw_line([PAD_WIDTH, 0],[PAD_WIDTH, HEIGHT], 1, "White")
# right gutter
canvas.draw_line([WIDTH - PAD_WIDTH, 0],[WIDTH - PAD_WIDTH, HEIGHT], 1, "White")
# update ball
ball_pos[0] += ball_vel[0]
ball_pos[1] += ball_vel[1]
# bottom collision
if ball_pos[1] >= HEIGHT - BALL_RADIUS * 2:
ball_vel[1] = - ball_vel[1]
# test
# print "bottom: " + str(print ball_vel[1])
# top collision
elif ball_pos[1] <= HEIGHT - HEIGHT + BALL_RADIUS:
ball_vel[1] = abs(ball_vel[1])
# test
# print "top: " + str(print ball_vel[1])
# left collision
elif ball_pos[0] <= PAD_WIDTH + BALL_RADIUS:
# test
# print "this is the ball position: " + str(ball_pos[1])
# determine whether paddle and ball collide
if ball_pos[1] >= (paddle1_pos[1]) and ball_pos[1] <= (paddle1_pos[1] + PAD_HEIGHT):
# reflects ball horizontally right
ball_vel[0] = abs(ball_vel[0])
# increase velocity by 10%
ball_vel[0] += ball_vel[0]/10
ball_vel[1] += ball_vel[1]/10
else:
ball_pos [0] = WIDTH/2
ball_pos [1] = HEIGHT/2
spawn_ball(RIGHT)
score2 += 1
# right collision
elif ball_pos[0] >= WIDTH - PAD_WIDTH - BALL_RADIUS:
# test
# print "this is the ball position: " + str(ball_pos[1])
# determine whether paddle and ball collide
# orient ball position values for right paddle, run above test while printing y values for paddle 2 in keydown event
if (-(ball_pos[1]) + HEIGHT) >= -(paddle2_pos[1]) and (-(ball_pos[1]) + HEIGHT) <= -(paddle2_pos[1]) + PAD_HEIGHT:
# reflects ball horizontally right
ball_vel[0] = - ball_vel[0]
# increase velocity by 10%
ball_vel[0] += ball_vel[0]/10
ball_vel[1] += ball_vel[1]/10
else:
ball_pos [0] = WIDTH/2
ball_pos [1] = HEIGHT/2
spawn_ball(LEFT)
score1 += 1
# draw ball
canvas.draw_circle(ball_pos, BALL_RADIUS, 1, "White", "White")
# update paddle's vertical position, keep paddle on the screen
paddle1_pos[1] += paddle1_vel[1]
paddle2_pos[1] += paddle2_vel[1]
# prevents paddles from leaving canvas
# bottom check
if paddle1_pos[1] >= HEIGHT - PAD_HEIGHT:
paddle1_pos[1] = HEIGHT - PAD_HEIGHT
# top check
elif paddle1_pos[1] <= HEIGHT - HEIGHT:
paddle1_pos[1] = HEIGHT - HEIGHT
# bottom check
if paddle2_pos[1] >= HEIGHT - HEIGHT:
paddle2_pos[1] = HEIGHT - HEIGHT
# top check
elif paddle2_pos[1] <= PAD_HEIGHT - HEIGHT:
paddle2_pos[1] = PAD_HEIGHT - HEIGHT
# draw paddles
# left paddle
canvas.draw_line([HALF_PAD_WIDTH, paddle1_pos[1]], [HALF_PAD_WIDTH, PAD_HEIGHT + paddle1_pos[1]], PAD_WIDTH, "Red")
# right paddle
canvas.draw_line([WIDTH - HALF_PAD_WIDTH, HEIGHT + paddle2_pos[1]], [WIDTH - HALF_PAD_WIDTH, HEIGHT - PAD_HEIGHT + paddle2_pos[1]], PAD_WIDTH, "Blue")
# draw scores
# left score
canvas.draw_text(str(score1), [WIDTH/2 - PAD_WIDTH * 10 , HEIGHT/5], 50, "Green")
# right score
canvas.draw_text(str(score2), [WIDTH/2 + PAD_WIDTH * 7, HEIGHT/5], 50, "Green")
def keydown(key):
global paddle1_vel, paddle2_vel, paddle1_pos
vel = 5
if key==simplegui.KEY_MAP["w"]:
paddle1_vel[1] = -(vel)
#print paddle1_pos[1]
elif key==simplegui.KEY_MAP["s"]:
paddle1_vel[1] = vel
# print paddle1_pos[1]
elif key==simplegui.KEY_MAP["up"]:
paddle2_vel[1] = -(vel)
#print paddle2_pos[1]
elif key==simplegui.KEY_MAP["down"]:
paddle2_vel[1] = vel
#print paddle2_pos[1]
def keyup(key):
global paddle1_vel, paddle2_vel
# stop paddles from moving if no keydown event
paddle1_vel[1] = 0
paddle2_vel[1] = 0
# create frame
frame = simplegui.create_frame("Pong", WIDTH, HEIGHT)
frame.set_draw_handler(draw)
frame.set_keydown_handler(keydown)
frame.set_keyup_handler(keyup)
frame.add_button("Restart", new_game, 75)
# start frame
new_game()
frame.start()
print "Think I made the right/blue paddle more complicated than it needed to be \
if anybody has the time would you mind looking at the coding associated with that paddle \
and provide feedback. Thanks! "