-
Notifications
You must be signed in to change notification settings - Fork 1
/
dcrnn_train_para.py
41 lines (30 loc) · 1.44 KB
/
dcrnn_train_para.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import tensorflow as tf
import yaml
from lib.utils import load_graph_data
from model.dcrnn_supervisor import DCRNNSupervisor
def main(args):
with open(args.config_filename) as f:
supervisor_config = yaml.load(f)
graph_pkl_filename = supervisor_config['data'].get('graph_pkl_filename')
sensor_ids, sensor_id_to_ind, adj_mx = load_graph_data(graph_pkl_filename)
tf_config = tf.ConfigProto()
# if args.use_cpu_only:
# tf_config = tf.ConfigProto(device_count={'GPU': 0})
tf_config = tf.ConfigProto(allow_soft_placement = True)
tf_config.gpu_options.allow_growth = True
with tf.device('/device:GPU:{}'.format(args.gpu_id)):
with tf.Session(config=tf_config) as sess:
supervisor = DCRNNSupervisor(adj_mx=adj_mx, **supervisor_config)
supervisor.train(sess=sess)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config_filename', default=None, type=str,
help='Configuration filename for restoring the model.')
parser.add_argument('--use_cpu_only', default=False, type=bool, help='Set to true to only use cpu.')
parser.add_argument('--gpu_id', type=int, help='Set the id of gpu this is allocated')
args = parser.parse_args()
main(args)