-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnextitrec_baseline.py
295 lines (252 loc) · 11.7 KB
/
nextitrec_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import torch
import torch.nn as nn
from generator_recsys import NextItNet_Decoder
import utils
import shutil
import time
import math
import numpy as np
import argparse
import Data_loader
import os
import random
# You can run it directly, first training and then evaluating
# nextitrec_generate.py can only be run when the model parameters are saved, i.e.,
# save_path = saver.save(sess,
# "Data/Models/generation_model/model_nextitnet.ckpt".format(iter, numIters))
# if you are dealing very huge industry dataset, e.g.,several hundred million items, you may have memory problem during training, but it
# be easily solved by simply changing the last layer, you do not need to calculate the cross entropy loss
# based on the whole item vector. Similarly, you can also change the last layer (use tf.nn.embedding_lookup or gather) in the prediction phrase
# if you want to just rank the recalled items instead of all items. The current code should be okay if the item size < 5 million.
#Strongly suggest running codes on GPU with more than 10G memory!!!
#if your session data is very long e.g, >50, and you find it may not have very strong internal sequence properties, you can consider generate subsequences
def generatesubsequence(train_set):
# create subsession only for training
subseqtrain = []
for i in range(len(train_set)):
# print x_train[i]
seq = train_set[i]
lenseq = len(seq)
# session lens=100 shortest subsession=5 realvalue+95 0
for j in range(lenseq - 2):
subseqend = seq[:len(seq) - j]
subseqbeg = [0] * j
subseq = np.append(subseqbeg, subseqend)
# beginseq=padzero+subseq
# newsubseq=pad+subseq
subseqtrain.append(subseq)
x_train = np.array(subseqtrain) # list to ndarray
del subseqtrain
# Randomly shuffle data
np.random.seed(10)
shuffle_train = np.random.permutation(np.arange(len(x_train)))
x_train = x_train[shuffle_train]
print("generating subsessions is done!")
return x_train
def INFO_LOG(info):
print("[%s]%s"%(time.strftime("%Y-%m-%d %X", time.localtime()), info))
# os.environ['CUDA_VISIBLE_DEVICES'] = '3'
def getBatch(data, batch_size):
start_inx = 0
end_inx = batch_size
while end_inx < len(data):
batch = data[start_inx:end_inx]
start_inx = end_inx
end_inx += batch_size
yield batch
# if end_inx >= len(data):
# batch = data[start_inx:]
# yield batch
parser = argparse.ArgumentParser()
parser.add_argument('--top_k', type=int, default=5,
help='Sample from top k predictions')
parser.add_argument('--beta1', type=float, default=0.9,
help='hyperpara-Adam')
parser.add_argument('--batch_size', default=128, type=int)
# history_sequences_20181014_fajie
# ml20m_update_ls30gr5
# mllatest_update_ls100gr3.csv
parser.add_argument('--datapath', type=str, default='Data/Session/ml20m_update_ls30gr5.csv',
help='data path')
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--device', default='cuda', type=str)
parser.add_argument('--savedir', default='Data/checkpoint', type=str)
parser.add_argument('--tt_percentage', type=float, default=0.2,
help='0.2 means 80% training 20% testing')
parser.add_argument('--is_generatesubsession', type=bool, default=False,
help='whether generating a subsessions, e.g., 12345-->01234,00123,00012 It may be useful for very some very long sequences')
parser.add_argument('--lr', default=0.001, type=float)
parser.add_argument('--shrink_lr', action="store_true", default=False)
parser.add_argument('--L2', default=0, type=float)
args = parser.parse_args()
print(args)
dl = Data_loader.Data_Loader({'model_type': 'generator', 'dir_name': args.datapath})
all_samples = dl.items
items_voc = dl.item2id
print("shape: ", np.shape(all_samples))
# Split train/test set
dev_sample_index = -1 * int(args.tt_percentage * float(len(all_samples)))
train_set, valid_set = all_samples[:dev_sample_index], all_samples[dev_sample_index:]
# Randomly shuffle data
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(train_set)))
train_set = train_set[shuffle_indices]
if args.is_generatesubsession:
x_train = generatesubsequence(train_set)
model_para = {
#if you changed the parameters here, also do not forget to change paramters in nextitrec_generate.py
'item_size': len(items_voc),
'dilated_channels': 256,
# if you use nextitnet_residual_block, you can use [1, 4, ],
# if you use nextitnet_residual_block_one, you can tune and i suggest [1, 2, 4, ], for a trial
# when you change it do not forget to change it in nextitrec_generate.py
'dilations': [1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4],
'kernel_size': 3,
'batch_size':args.batch_size,
'iterations':200,
'is_negsample':False, #False denotes no negative sampling
'seq_len': len(all_samples[0]),
'pad': dl.padid,
}
print("dilations", model_para["dilations"])
print("dilated_channels", model_para["dilated_channels"])
print("batch_size", model_para["batch_size"])
args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = NextItNet_Decoder(model_para).to(args.device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=0)
if args.shrink_lr == True:
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.02)
criterion = nn.CrossEntropyLoss()
best_acc = 0
def test(epoch):
global best_acc
model.eval()
# test_loss = 0
correct = 0
total = 0
batch_size = model_para['batch_size']
batch_num = valid_set.shape[0] / batch_size
INFO_LOG("-------------------------------------------------------test")
with torch.no_grad():
start = time.time()
for batch_idx, batch_sam in enumerate(getBatch(valid_set, batch_size)):
inputs, targets = torch.LongTensor(batch_sam[:,:-1]).to(args.device), torch.LongTensor(batch_sam[:,-1]).to(args.device).view([-1])
outputs = model(inputs, onecall=True) # [batch_size, item_size] only predict the last position
_, sort_idx_20 = torch.topk(outputs, k=args.top_k + 15, sorted=True) # [batch_size, 20]
_, sort_idx_5 = torch.topk(outputs, k=args.top_k, sorted=True) # [batch_size, 5]
accuracy(sort_idx_5.data.cpu().numpy(), sort_idx_20.data.cpu().numpy(), targets.data.cpu().numpy(),
batch_idx, batch_num, epoch)
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
end = time.time()
print('Acc(hit@1): %.3f%% (%d/%d)' % (100. * correct / total, correct, total))
INFO_LOG("TIME FOR EPOCH During Testing: {}".format(end - start))
INFO_LOG("TIME FOR BATCH (mins): {}".format((end - start) / batch_num))
acc = 100. * correct / total
if acc > best_acc:
best_acc = acc
state = {
'net': model.state_dict(),
'acc(hit@1)': acc
}
torch.save(state, '%s/best_weishi_%s.t7' % (args.savedir, model_para['dilations']))
print('epoch:%d accuracy(hit@1):%.3f best:%.3f' % (epoch, acc, best_acc))
INFO_LOG("epoch: {}\t total_epoch:{}\t total_batches:{}".format(
epoch, args.epochs, batch_num))
INFO_LOG("Accuracy mrr_5: {}".format(sum(curr_preds_5) / float(len(curr_preds_5))))
INFO_LOG("Accuracy mrr_20: {}".format(sum(curr_preds_20) / float(len(curr_preds_20))))
INFO_LOG("Accuracy hit_5: {}".format(sum(rec_preds_5) / float(len(rec_preds_5))))
INFO_LOG("Accuracy hit_20: {}".format(sum(rec_preds_20) / float(len(rec_preds_20))))
INFO_LOG("Accuracy ndcg_5: {}".format(sum(ndcg_preds_5) / float(len(ndcg_preds_5))))
INFO_LOG("Accuracy ndcg_20: {}".format(sum(ndcg_preds_20) / float(len(ndcg_preds_20))))
def train(epoch):
model.train()
train_loss = 0
correct = 0
total = 0
batch_size = model_para['batch_size']
batch_num = train_set.shape[0] / batch_size
start = time.time()
INFO_LOG("-------------------------------------------------------train")
for batch_idx, batch_sam in enumerate(getBatch(train_set, batch_size)):
inputs, targets = torch.LongTensor(batch_sam[:, :-1]).to(args.device), torch.LongTensor(batch_sam[:, 1:]).to(
args.device).view([-1])
optimizer.zero_grad()
outputs = model(inputs) # [batch_size*seq_len, item_size]
loss = criterion(outputs, targets)
L2_loss = 0
for name, param in model.named_parameters():
if 'weight' in name:
L2_loss += torch.norm(param, 2)
loss += args.L2 * L2_loss
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if batch_idx % max(10, batch_num//10) == 0:
INFO_LOG("epoch: {}\t {}/{}".format(epoch, batch_idx, batch_num))
print('Loss: %.3f | Acc(hit@1): %.3f%% (%d/%d)' % (
train_loss / (batch_idx + 1), 100. * correct / total, correct, total))
end = time.time()
INFO_LOG("TIME FOR EPOCH During Training: {}".format(end - start))
INFO_LOG("TIME FOR BATCH (mins): {}".format((end - start) / batch_num))
if args.shrink_lr:
lr_scheduler.step()
def accuracy(pred_items_5, pred_items_20, target, batch_idx, batch_num, epoch): # output: [batch_size, 20] target: [batch_size]
"""Computes the accuracy over the k top predictions for the specified values of k"""
# print(type(pred_items_20[0]))
# print(type(pred_items_5[0]))
for bi in range(pred_items_5.shape[0]):
true_item=target[bi]
predictmap_5={ch : i for i, ch in enumerate(pred_items_5[bi])}
predictmap_20 = {ch: i for i, ch in enumerate(pred_items_20[bi])}
rank_5 = predictmap_5.get(true_item)
rank_20 = predictmap_20.get(true_item)
if rank_5 == None:
curr_preds_5.append(0.0)
rec_preds_5.append(0.0)
ndcg_preds_5.append(0.0)
else:
MRR_5 = 1.0/(rank_5+1)
Rec_5 = 1.0#3
ndcg_5 = 1.0 / math.log(rank_5 + 2, 2) # 3
curr_preds_5.append(MRR_5)
rec_preds_5.append(Rec_5)#4
ndcg_preds_5.append(ndcg_5) # 4
if rank_20 == None:
curr_preds_20.append(0.0)
rec_preds_20.append(0.0)#2
ndcg_preds_20.append(0.0)#2
else:
MRR_20 = 1.0/(rank_20+1)
Rec_20 = 1.0#3
ndcg_20 = 1.0 / math.log(rank_20 + 2, 2) # 3
curr_preds_20.append(MRR_20)
rec_preds_20.append(Rec_20) # 4
ndcg_preds_20.append(ndcg_20) # 4
if batch_idx % max(10, batch_num//10) == 0:
# INFO_LOG("epoch/total_epoch: {}/{}\t batch/total_batches: {}/{} \t loss: {:.3f}".format(
# epoch, args.epochs, batch_idx, batch_num, loss/(batch_idx+1)))
INFO_LOG("epoch/total_epoch: {}/{}\t batch/total_batches: {}/{}".format(
epoch, args.epochs, batch_idx, batch_num))
INFO_LOG("Accuracy hit_5: {}".format(sum(rec_preds_5) / float(len(rec_preds_5)))) # 5
INFO_LOG("Accuracy hit_20: {}".format(sum(rec_preds_20) / float(len(rec_preds_20)))) # 5
if __name__ == '__main__':
for i, (key, u) in enumerate(model.state_dict().items()):
print(key, u.size())
for epoch in range(args.epochs):
train(epoch)
curr_preds_5 = []
rec_preds_5 = []
ndcg_preds_5 = []
curr_preds_20 = []
rec_preds_20 = []
ndcg_preds_20 = []
test(epoch)
state = {
'net': model.state_dict(),
}
torch.save(state, '%s/ckpt_%d.t7' % (args.savedir, epoch))