-
Notifications
You must be signed in to change notification settings - Fork 9
/
eval_MSR_VTT.lua
185 lines (166 loc) · 8.69 KB
/
eval_MSR_VTT.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
--require('mobdebug').start()
require 'torch'
require 'nn'
require 'nngraph'
-- exotics
require 'loadcaffe'
-- local imports
local utils = require 'misc.utils'
require 'misc.DataLoader_FEAT'
require 'misc.DataLoaderRaw'
require 'misc.LanguageModel'
local net_utils = require 'misc.net_utils'
-------------------------------------------------------------------------------
-- Input arguments and options
-------------------------------------------------------------------------------
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train an Image Captioning model')
cmd:text()
cmd:text('Options')
-- Input paths
cmd:option('-model','model_id_MSR_VTT_challenge.t7','path to model to evaluate')
-- Basic options
cmd:option('-input_feature_dim', 27648,'the input feature size of each video.')
cmd:option('-batch_size', 1, 'if > 0 then overrule, otherwise load from checkpoint.')
cmd:option('-num_images', 497, 'how many images to use when periodically evaluating the loss? (-1 = all)')
cmd:option('-language_eval', 1, 'Evaluate language as well (1 = yes, 0 = no)? BLEU/CIDEr/METEOR/ROUGE_L? requires coco-caption code from Github.')
cmd:option('-dump_images', 0, 'Dump images into vis/imgs folder for vis? (1=yes,0=no)')
cmd:option('-dump_json', 1, 'Dump json with predictions into vis folder? (1=yes,0=no)')
cmd:option('-dump_path', 0, 'Write image paths along with predictions into vis json? (1=yes,0=no)')
-- Sampling options
cmd:option('-sample_max', 1, '1 = sample argmax words. 0 = sample from distributions.')
cmd:option('-beam_size', 2, 'used when sample_max = 1, indicates number of beams in beam search. Usually 2 or 3 works well. More is not better. Set this to 1 for faster runtime but a bit worse performance.')
cmd:option('-temperature', 1.0, 'temperature when sampling from distributions (i.e. when sample_max = 0). Lower = "safer" predictions.')
-- For evaluation on a folder of images:
cmd:option('-image_folder', '', 'If this is nonempty then will predict on the images in this folder path')
cmd:option('-image_root', '', 'In case the image paths have to be preprended with a root path to an image folder')
-- For evaluation on MSCOCO images from some split:
cmd:option('-input_h5','data_augmentation_test.h5','path to the h5file containing the preprocessed dataset. empty = fetch from model checkpoint.')
cmd:option('-input_json','data_augmentation_test.json','path to the json file containing additional info and vocab. empty = fetch from model checkpoint.')
cmd:option('-split', 'test', 'if running on MSCOCO images, which split to use: val|test|train')
cmd:option('-coco_json', '', 'if nonempty then use this file in DataLoaderRaw (see docs there). Used only in MSCOCO test evaluation, where we have a specific json file of only test set images.')
-- misc
cmd:option('-backend', 'nn', 'nn|cudnn')
cmd:option('-id', 'evalscript', 'an id identifying this run/job. used only if language_eval = 1 for appending to intermediate files')
cmd:option('-seed', 123, 'random number generator seed to use')
cmd:option('-gpuid', 0, 'which gpu to use. -1 = use CPU')
cmd:text()
-------------------------------------------------------------------------------
-- Basic Torch initializations
-------------------------------------------------------------------------------
local opt = cmd:parse(arg)
torch.manualSeed(opt.seed)
torch.setdefaulttensortype('torch.FloatTensor') -- for CPU
if opt.gpuid >= 0 then
require 'cutorch'
require 'cunn'
if opt.backend == 'cudnn' then require 'cudnn' end
cutorch.manualSeed(opt.seed)
cutorch.setDevice(opt.gpuid + 1) -- note +1 because lua is 1-indexed
end
-------------------------------------------------------------------------------
-- Load the model checkpoint to evaluate
-------------------------------------------------------------------------------
assert(string.len(opt.model) > 0, 'must provide a model')
local checkpoint = torch.load(opt.model)
-- override and collect parameters
if string.len(opt.input_h5) == 0 then opt.input_h5 = checkpoint.opt.input_h5 end
if string.len(opt.input_json) == 0 then opt.input_json = checkpoint.opt.input_json end
if opt.batch_size == 0 then opt.batch_size = checkpoint.opt.batch_size end
local fetch = {'rnn_size', 'input_encoding_size', 'drop_prob_lm', 'cnn_proto', 'cnn_model', 'seq_per_img'}
for k,v in pairs(fetch) do
opt[v] = checkpoint.opt[v] -- copy over options from model
end
local vocab = checkpoint.vocab -- ix -> word mapping
-------------------------------------------------------------------------------
-- Create the Data Loader instance
-------------------------------------------------------------------------------
local loader
if string.len(opt.image_folder) == 0 then
loader = DataLoader_FEAT{h5_file = opt.input_h5, json_file = opt.input_json, input_feature_dim = opt.input_feature_dim}
else
loader = DataLoaderRaw{folder_path = opt.image_folder, coco_json = opt.coco_json, input_feature_dim = opt.input_feature_dim}
end
-------------------------------------------------------------------------------
-- Load the networks from model checkpoint
-------------------------------------------------------------------------------
local protos = checkpoint.protos
protos.expander = nn.FeatExpander(opt.seq_per_img)
protos.crit = nn.LanguageModelCriterion()
protos.lm:createClones() -- reconstruct clones inside the language model
if opt.gpuid >= 0 then for k,v in pairs(protos) do v:cuda() end end
-------------------------------------------------------------------------------
-- Evaluation fun(ction)
-------------------------------------------------------------------------------
local function eval_split(split, evalopt)
local verbose = utils.getopt(evalopt, 'verbose', true)
local num_images = utils.getopt(evalopt, 'num_images', true)
protos.cnn:evaluate()
protos.lm:evaluate()
loader:resetIterator(split) -- rewind iteator back to first datapoint in the split
local n = 0
local loss_sum = 0
local loss_evals = 0
local predictions = {}
while true do
-- fetch a batch of data
local data = loader:getBatch{batch_size = opt.batch_size, split = split, seq_per_img = opt.seq_per_img, input_feature_dim = opt.input_feature_dim}
--data.images = net_utils.prepro(data.images, false, opt.gpuid >= 0) -- preprocess in place, and don't augment
n = n + data.images:size(1)
-- forward the model to get loss
local feats = protos.cnn:forward((data.images):cuda())
-- evaluate loss if we have the labels
local loss = 0
if data.labels then
local expanded_feats = protos.expander:forward(feats)
local logprobs = protos.lm:forward{expanded_feats, data.labels}
loss = protos.crit:forward(logprobs, data.labels)
loss_sum = loss_sum + loss
loss_evals = loss_evals + 1
end
-- forward the model to also get generated samples for each image
local sample_opts = { sample_max = opt.sample_max, beam_size = opt.beam_size, temperature = opt.temperature }
local seq, logprob = protos.lm:sample(feats:cuda(), sample_opts)
local sents = net_utils.decode_sequence(vocab, seq)
logsum = torch.sum(logprob,1)
for k=1,#sents do
local entry = {image_id = data.infos[k].id, caption = sents[k]}
if opt.dump_path == 1 then
entry.file_name = data.infos[k].file_path
end
table.insert(predictions, entry)
if opt.dump_images == 1 then
-- dump the raw image to vis/ folder
local cmd = 'cp "' .. path.join(opt.image_root, data.infos[k].file_path) .. '" vis/imgs/img' .. #predictions .. '.jpg' -- bit gross
print(cmd)
os.execute(cmd) -- dont think there is cleaner way in Lua
end
if verbose then
print(string.format('image %s: %s|%f', entry.image_id,entry.caption,logsum[1][k]/#sents[k]))
end
end
-- if we wrapped around the split or used up val imgs budget then bail
local ix0 = data.bounds.it_pos_now
local ix1 = math.min(data.bounds.it_max, num_images)
if verbose then
print(string.format('evaluating performance... %d/%d (%f)', ix0-1, ix1, loss))
end
if data.bounds.wrapped then break end -- the split ran out of data, lets break out
if num_images >= 0 and n >= num_images then break end -- we've used enough images
end
local lang_stats
if opt.language_eval == 1 then
lang_stats = net_utils.language_eval(predictions, opt.id)
end
return loss_sum/loss_evals, predictions, lang_stats
end
local loss, split_predictions, lang_stats = eval_split(opt.split, {num_images = opt.num_images})
print('loss: ', loss)
if lang_stats then
print(lang_stats)
end
if opt.dump_json == 1 then
-- dump the json
utils.write_json('vis/vis.json', split_predictions)
end