-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
history.py
228 lines (208 loc) · 7.16 KB
/
history.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from copy import deepcopy
from matplotlib import pyplot as plt
import matplotlib.gridspec as gridspec
from majortrack import MajorTrack
SMALL_SIZE, MEDIUM_SIZE, BIGGER_SIZE = 12, 14, 18
plt.rc('font', size=SMALL_SIZE) # controls default text sizes
plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
# #############################################################################
# Define the data time-sequence data
_time_windows = [
[-0.5, 0.5], [0.5, 1.5], [1.5, 2.5], [2.5, 3.5], [3.5, 4.5], [4.5, 5.5]
]
time_windows = [[10*el for el in tw] for tw in _time_windows]
# 1. The grouping
# # at t=0:
t0g0 = [*range(20)]
t0g1 = [*range(35, 46)]
# # at t=1:
t1g0 = [*range(2, 25)]
t1g1 = [0, 1]
t1g2 = [*range(35, 41)]
t1g3 = [*range(41, 46)]
# # at t=2:
t2g4 = [0, 1]
t2g3 = [2, 3]
t2g2 = [*range(4, 10)]
t2g0 = [10, 11]
t2g1 = [*range(12, 23)]
t2g5 = [23, 24]
t2g6 = [*range(35, 43)]
t2g7 = [43, 44, 45]
# # at t=3:
t3g0 = [0, 1]
t3g1 = [*range(4, 7)] + [25, 26]
t3g2 = [*range(7, 10)]
t3g4 = [*range(10, 17)]
t3g3 = [*range(17, 21)]
t3g5 = [23, 24]
t3g6 = [35, 36]
t3g7 = [37, 38]
t3g8 = [*range(43, 47)]
t3g9 = [39, 40, 41, 42] + [2, 3]
# # at t=4:
t4g0 = [*range(14)] + [*range(23, 27)]
t4g1 = [17, 18, 19]
t4g2 = [*range(14, 17)] + [*range(43, 49)]
t4g3 = [*range(35, 43)]
# # at t=5:
t5g0 = [*range(13)] + [17, 18]
t5g1 = [*range(13, 17)] + [*range(35, 40)] + [*range(42, 49)]
t5g2 = [40, 41]
individuals = [
set(t0g0 + t0g1),
set(t1g0+t1g1 + t1g2+t1g3),
set(t2g0+t2g1+t2g2+t2g3+t2g4+t2g5 + t2g6+t2g7),
set(t3g0+t3g1+t3g2+t3g3+t3g4+t3g5 + t3g6+t3g7+t3g8+t3g9),
set(t4g0+t4g1 + t4g2+t4g3),
set(t5g0 + t5g1+t5g2)
]
groupings = [
[t0g0, t0g1],
[t1g0, t1g1, t1g2, t1g3],
[t2g0, t2g1, t2g2, t2g3, t2g4, t2g5, t2g6, t2g7],
[t3g0, t3g1, t3g2, t3g3, t3g4, t3g5, t3g6, t3g7, t3g8, t3g9],
[t4g0, t4g1, t4g2, t4g3],
[t5g0, t5g1, t5g2]
]
groupings = [[set(grp) for grp in groups] for groups in groupings]
# #############################################################################
# Initiate the algorithm
mt = MajorTrack(
clusterings=groupings,
individuals=individuals,
history=0,
timepoints=[tw[0] for tw in time_windows]
)
mt.get_group_matchup('fraction')
# create the different instances with different history parameters
mt1 = deepcopy(mt)
mt5 = deepcopy(mt)
mt5.history = 5
mt.get_dcs()
mt.get_community_group_membership()
mt.get_community_membership()
mt.get_community_coloring()
# use same colours for other visualizations
comm_colours = list(mt.comm_colours)
sp_commm_color_idx = dict(mt.sp_community_colour_idx)
mt1.comm_colours = list(comm_colours)
mt1.sp_community_colour_idx = dict(sp_commm_color_idx)
mt5.comm_colours = list(comm_colours)
mt5.sp_community_colour_idx = dict(sp_commm_color_idx)
# 1 step memory
mt1.history = 1
mt1.get_dcs()
mt1.get_community_group_membership()
mt1.get_community_membership()
# 5 step memory
mt5.history = 5
mt5.get_dcs()
mt5.get_community_group_membership()
mt5.get_community_membership()
# plotting params
plot_params = {
'cluster_width': 2,
'flux_kwargs': {'alpha': 0.2, 'lw': 0.0, 'facecolor': 'cluster'},
'cluster_kwargs': {'alpha': 1.0, 'lw': 0.0},
'label_kwargs': {'fontweight': 'heavy'},
'with_cluster_labels': False,
'cluster_label': 'group_index',
'cluster_label_margin': (-1.6, 0.1),
'x_axis_offset': 0.07,
'redistribute_vertically': 1,
'cluster_location': 'center',
'y_fix': {
20.0: [('4', '7'), ('0', '1'), ('4', '3')],
30.0: [('0', '3')]
}
}
rawmt = deepcopy(mt1)
# Single
# #############################################################################
# The trace back (memory) part
# the merging illustration
sankey_plot_params = dict(plot_params)
sankey_plot_params.update({
'merged_edgecolor': 'none', # 'xkcd:gray',
'merged_linewidth': 1,
'cluster_facecolor': 'community',
'cluster_edgecolor': 'community',
'flux_facecolor': 'cluster',
'flux_edgecolor': 'cluster'
})
# raw image
spp_raw = deepcopy(sankey_plot_params)
spp_raw['l_size'] = 7
spp_raw['cluster_facecolor'] = 'xkcd:gray'
spp_raw['default_cluster_facecolor'] = 'xkcd:gray'
# 1 step
spp_1step = deepcopy(sankey_plot_params)
spp_1step['l_size'] = 9
# 5 step
spp_5step = deepcopy(sankey_plot_params)
spp_5step['l_size'] = 9
def _set_axis(axes, mt, spp, with_xaxis=True):
axes.axis('equal')
l_size = spp.pop('l_size', 9)
mt.get_alluvialdiagram(
axes,
invisible_x=not with_xaxis,
**spp,
)
if with_xaxis:
tp = [
(t + .5*(mt.slice_widths[i])) + .5*plot_params['cluster_width']
for i, t in enumerate(mt.timepoints)
]
axes.set_xticks(tp, minor=False)
# ax_tb3.xaxis.tick_top()
axes.set_xticklabels(
[
r'$\mathbf{{t_{0}}}$'.format(idx)
for idx in range(6)
],
minor=False,
size=l_size
)
axes.tick_params(axis=u'x', which=u'both', length=0)
plt.setp(axes.get_xticklabels(), visible=True)
return axes
def set_raw_axes(axes, mt=rawmt, spp=spp_raw, with_xaxis=True):
return _set_axis(axes, mt, spp, with_xaxis)
def set_one_axes(axes, mt=mt1, spp=spp_1step, with_xaxis=True):
return _set_axis(axes, mt, spp, with_xaxis)
def set_five_axes(axes, mt=mt5, spp=spp_5step, with_xaxis=True):
return _set_axis(axes, mt, spp, with_xaxis)
if __name__ == '__main__':
# with plt.xkcd():
if True:
fig1 = plt.figure(figsize=(8, 6.0))
gsIllust = gridspec.GridSpec( 22, 20, left=0.03, wspace=0.0,
hspace=0.0, top=0.98, bottom=0.07, right=0.97)
ax_illust_raw = fig1.add_subplot(gsIllust[1:7, 7:13])
ax_illust_raw = set_raw_axes(ax_illust_raw)
ax_illust_raw.xaxis.set_ticks_position('top')
ax_illust_raw.annotate(
'sequence\nof\nclusterings', (0.51, -0.2),
xycoords='axes fraction', size=8, ha='center', va='center',
fontweight='heavy',
)
ax_illust_one = fig1.add_subplot(gsIllust[10:25, :9])
ax_illust_one = set_one_axes(ax_illust_one)
ax_illust_one.patch.set_visible(False)
ax_illust_one.set_title(
'1-step history', fontdict={'fontweight': 'heavy'})
ax_illust_five = fig1.add_subplot(gsIllust[10:22, 11:])
ax_illust_five = set_five_axes(ax_illust_five)
ax_illust_five.patch.set_visible(False)
ax_illust_five.set_title(
'5-step history', fontdict={'fontweight': 'heavy'})
# plt.tight_layout()
fig1.savefig('history.png')
fig1.show()