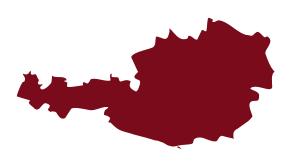


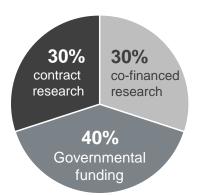
Challenges in analysis and interpretation of clinical genetic data using different NGS Platforms and sequencing assays

Austrian Institute of Technology AIT

Stephan Pabinger


stephan.pabinger@ait.ac.at

@tadkeys



AIT - Austrian Institute of Technology

The largest applied research institute in **Austria**

Owner structure

50.46%

Republic of Austria

49.54%

Federation of Austrian Industries

Energy

Energy Infrastructure

- Smart Grids
- Smart Buildings
- Photovoltaics
- Thermal Energy Systems

Integrated Energy Systems

- Smart Cities and Regions
- Complex Energy Systems

Mobility

Transportation Infrastructure

- Environmentally-friendly transport infrastructure
- Cost-effective and resilient transport infrastructure
- Innovative road infrastructure safety strategies

Low-emission Transport

- High performance material
- Light-weight design of vehicle components
- Sustainable process

Multi-Modal Mobility Systems

- Human factors for personal mobility
- Integrated management of transport systems
- Real-time dynamic management of transportation systems

Safety & Security

Intelligent Vision Systems

- Multi- Camera Vision
- High-Speed Imaging

Future Networks and Services

- Advanced Applications in Sensor Networks
- Next-Generation
 Content Management
 Systems
- Secure Information Access in Distributed Systems

Highly Reliable Software and Systems

 Assessment and Testing of Autonomous and Safety-Critical Systems

Health & Environment

Biomedical & Biomolecular Health Solutions

- Preclinical and Clinical Diagnostics
- Molecular Diagnostics
- AAL Ambient Assisted Living
- Advanced Implant Solutions

Resource Exploitation and Management

- Exploitation of Biological Resources
- Microbial Detection
- Green Processes

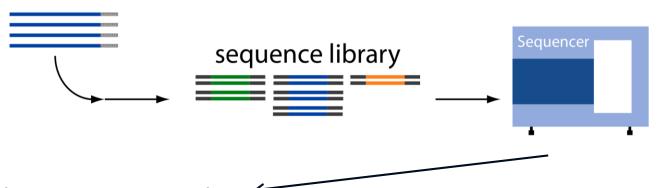
Innovation Systems

Foresight & Governance

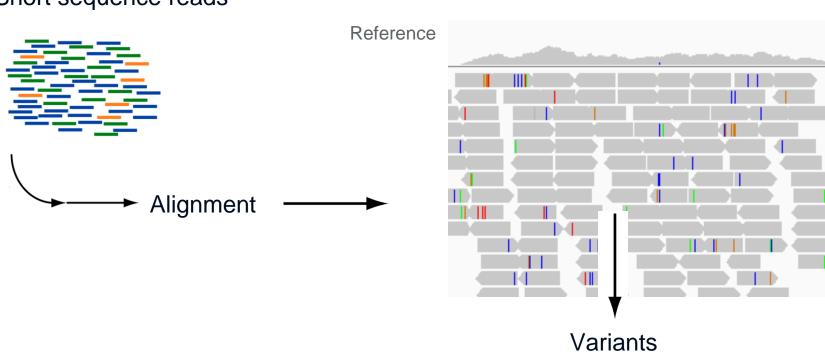
- New R&I Processes and Systems
- Anticipatory
 Governance

Technology Experience

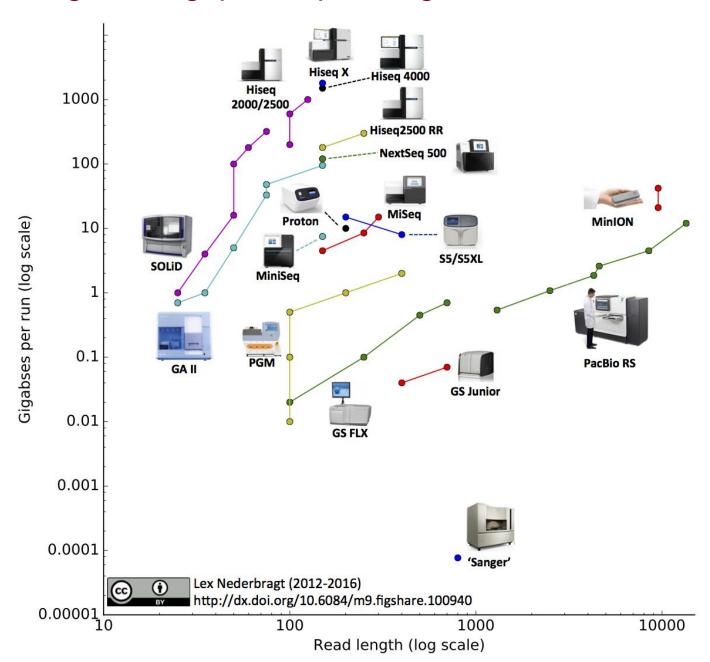
- Contextual Experience
- Experience Foundations


Identify effective ways for early diagnosis of diseases

Saliva diagnostics


Challenges in analysis and interpretation of clinical genetic data using different NGS Platforms and sequencing assays

Principle



Short sequence reads

High throughput sequencing

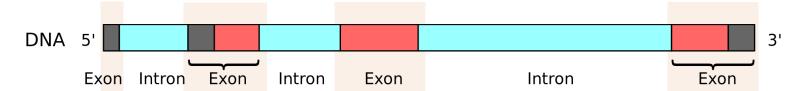
Properties of different technologies

Instrument	Amplification	Run time	Millions of Reads/run	Bases / read	Gbp/run
Illumina MiSeq	BridgePCR	5-55h	1-22	50-600	0.3-13.2
Illumina NextSeq 500	BridgePCR	11-30h	130-400	75-300	19.5-120
Illumina HiSeq 2500	BridgePCR	10h - 11days	300-2000	50-300	15-500
Ion Torrent - PGM	emPCR	2-7h	0.475-4.75	200-400	0.095-1.9
Ion Torrent - Proton	emPCR	4-6h	70-500	175	12.25-87.5
Pacific Biosciences RS II	None	2 hrs.	0,03	3000	0,09
Oxford Nanopore MinION (forecast)	None	≤6 hrs.	0,1	9000	0,9

Error Rates

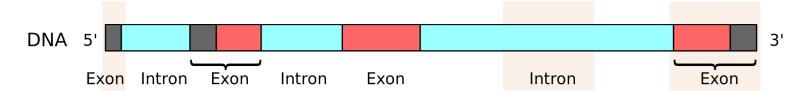
Instrument	Primary Errors	Single-pass Error Rate (%)	Final Error Rate (%)
Illumina	Substitutions	~0.1	~0.1
Ion Torrent	INDELs	~1	~1
Oxford Nanopore	Deletions	≥4	4
PacBio RS	INDELs	~13	≤1

Sequencing Techniques



Whole genome sequencing

Sequencing Techniques



- Whole genome sequencing
- Whole exome sequencing
- Custom capture

Sequencing Techniques

- Whole genome sequencing
- Whole exome sequencing
- Custom capture
- Amplicon sequencing

What is the best technology for my use-case?

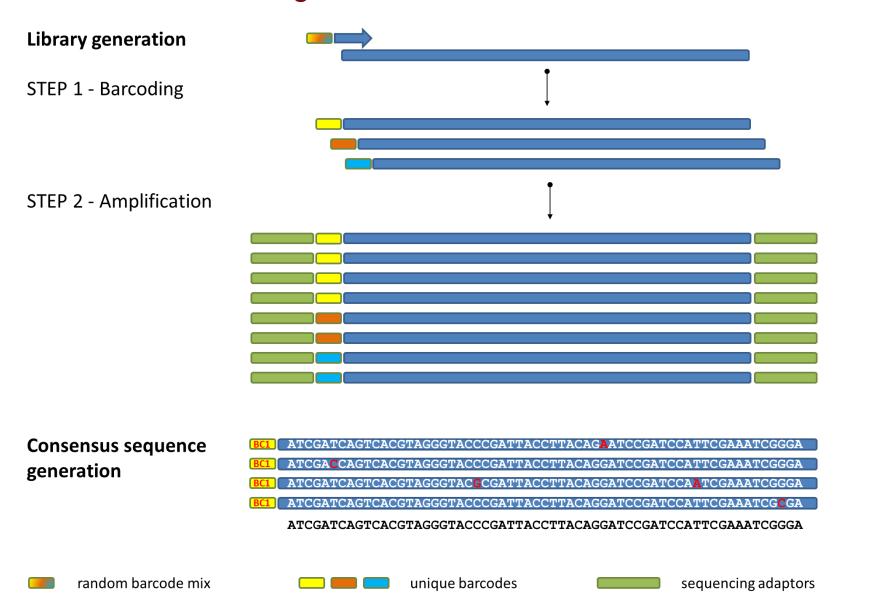
- Clinical question?
- Number of samples?
- Cost?
- Future strategies?

Challenges of current technologies

Amplification errors

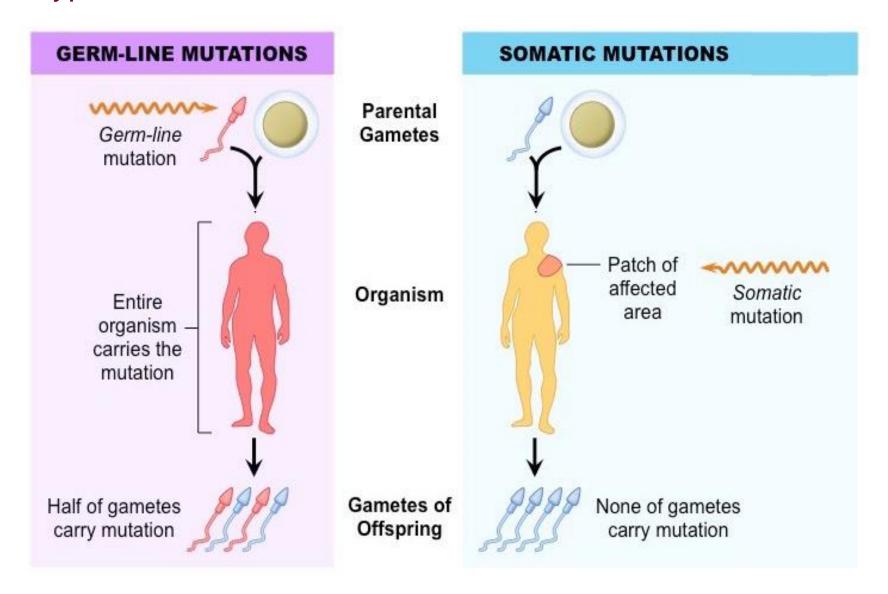
All polymerases have an inherent error rate (10⁻⁶ - 10⁻⁷)

GC bias

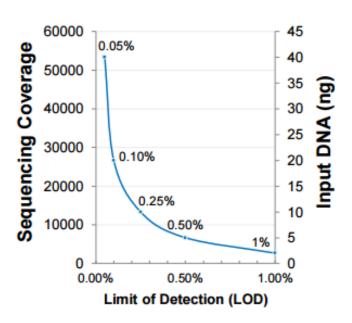

- PCR bias against GC rich sequences
- Exome capture bias against GC rich sequences

Trouble detecting small insertions and deletions

- Capture baits may not hybridize well
- Capture cannot be used to reliably detect large CNVs


Molecular barcoding

Types of variants


Somatic mutations – coverage considerations

Theoretical coverage

Number of cells	DNA (ng) Amount	Max Coverage	Sensitivity (4x Cov)
166.667	1000	333.333	0,001%
16.667	100	33.333	0,012%
6.667	40	13.333	0,03%
3.333	20	6.667	0,06%
1.667	10	3.333	0,12%
167	1	333	1,2%
17	0,1	33	12%

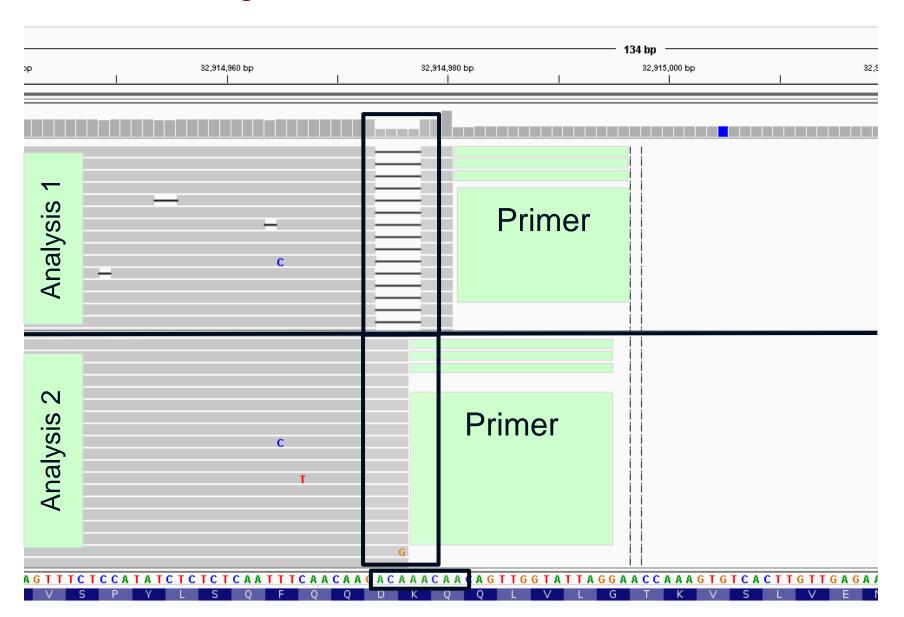
cell free DNA (Ion Torrent)

Analysis challenges

QC

- Quality trimming / filtering what cutoff?
- Correct primer sequences

Mapping


- Correct tool
- Choice of reference

Variant calling

- Which tool? Combine several?
- Germline, somatic
- Structural variations
- Parameters

Primer trimming

Primer trimming – before mapping

REF: AACAAGACAGTTGGTATTAGGAA

Reads: AACAAGACAACAGTTGGTATTAGGAA

AACAAGACAACAGTTGGTATTAGGAA

Primer: ACAGTTGGTATTAGGAA

Read trimmed: AACAAGACA

Alignment: ref: AACAAGACAGTTGGTATTAGGAA

AACAAG**ACA**

 \rightarrow NO INDEL

Primer trimming – after mapping

REF: AACAAGACAGTTGGTATTAGGAA

Reads: AACAAGACAACAGTTGGTATTAGGAA

AACAAGACAACAGTTGGTATTAGGAA

Alignment: ref: AACAAGACAGTTGGTATTAGGAA

reads: AACAAG ACAACAGTTGGTATTAGGAA

Primer: ACAGTTGGTATTAGGAA

Alignment: ref: AACAAGACAGTTGGTATTAGGAA

Trimmed reads : AACAAG ACA

 \rightarrow INDEL

Interpretation of variants (technical)

Variants

- Check strand-bias
- Check coverage
- Homopolymer region

Analysis system

- Be careful with stringent default filtering settings
- Know your analysis system (avoid black-boxes)
- Ability to use own databases

Sources of error

- Contaminations through barcodes
- PCR amplification
- FP through sampling (e.g.: skin tissue when taking blood)

-> Clinical interpretation

Recommendations

- Choose sequencing system according to your needs
- Use transparent analysis systems
- Optimize analysis settings to use-case
- Check technical properties of variants (coverage, strand, qualities, ...)
- Look at variants in genome browser