-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcharvae_train_v0.py
223 lines (176 loc) · 7.37 KB
/
charvae_train_v0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# coding utf-8
"""
Written_by: Taichi Iki
Created_at: 2018-06-27
Abstract:
"""
import os
import pickle
import numpy as np
import json
from PIL import Image
import chainer
import chainer.links as L
import chainer.functions as F
import chainer.variable as V
from chainer.optimizer import GradientClipping
from chainer.optimizer import WeightDecay
from chainer.functions.loss.vae import gaussian_kl_divergence
from chainer import serializers
from chainer import initializers
import chainer.cuda as cuda
class ArgSpace(object):
def __init__(args, dir_model=None):
# model namespace
args.namespace = 'charvae_train'
args.dir_model = dir_model
if args.dir_model is None:
args.dir_model = args.make_model_name(args.namespace)
args.dataset_train_path = 'char_images.pklb'
args.minibatch_size_train = 10
args.minibatch_size_tuning = 10
args.dir_base_model = None
args.train_max_epoch = 10000
args.save_each = args.train_max_epoch//10
args.gpuid = 0
args.kld_function = {ep_id:min(float(ep_id)/(0.2*args.train_max_epoch), 1.0) \
for ep_id in range(args.train_max_epoch)}
args.train_sgd_lr = 1.0
args.train_weight_decay_rate = 10e-6
args.train_gradient_clipping_norm = 1.0
args.decode_samples = ' @11i!おあい悪良人音楽日目森林貝木本池海二ニEFQO'
def make_model_name(self, namespace):
import sys
import re
bn = os.path.basename(sys.argv[0])
m = re.search('^' + re.escape(namespace) + '_(.+)\.py$', bn)
if m is None:
raise Exception('The file name must start with "%s_" and end with ".py"'%(namespace))
return 'model_' + m.group(1)
def store(self):
with open(os.path.join(self.dir_model, 'args.pklb'), 'wb') as f:
pickle.Pickler(f, protocol=2).dump(self)
class NeuralModel(chainer.Chain):
def __init__(self, shape_x=[64, 64], h_enc_dim=1024, z_dim=32, h_dec_dim=1024):
self.shape_x = shape_x
self.enc_dim = 1
for x in self.shape_x: self.enc_dim *= x
self.z_dim = z_dim
self.h_enc_dim = h_enc_dim
self.h_dec_dim = h_dec_dim
initializer = chainer.initializers.HeNormal()
super(NeuralModel, self).__init__(
enc_fc_h = L.Linear(self.enc_dim, self.h_enc_dim, initialW=initializer),
enc_fc_mu = L.Linear(self.h_enc_dim, self.z_dim, initialW=initializer),
enc_fc_ln_var = L.Linear(self.h_enc_dim, self.z_dim, initialW=initializer),
dec_fc_h = L.Linear(self.z_dim, self.h_dec_dim, initialW=initializer),
dec_fc = L.Linear(self.h_dec_dim, self.enc_dim, initialW=initializer),
)
def encode(self, x):
h = F.tanh(self.enc_fc_h(x))
mu = self.enc_fc_mu(h)
ln_var = self.enc_fc_ln_var(h)
return mu, ln_var
def decode(self, z, sigmoid=True):
h = F.tanh(self.dec_fc_h(z))
x = self.dec_fc(h)
x = F.reshape(x, [-1]+self.shape_x)
x = F.sigmoid(x) if sigmoid else x
return x
def __call__(self, x, C=1.0, k=1):
mu, ln_var = self.encode(x)
mb_size = mu.data.shape[0]
# reconstruction loss
rec_loss = 0
for l in range(k):
z = F.gaussian(mu, ln_var)
rec_loss += F.bernoulli_nll(x, self.decode(z, sigmoid=False))
rec_loss /= (k*mb_size)
kld_loss = gaussian_kl_divergence(mu, ln_var) / mb_size
loss = rec_loss + C*kld_loss
return loss, float(rec_loss.data), float(kld_loss.data)
def main(args):
if not os.path.exists(args.dir_model):
os.mkdir(args.dir_model)
log_file_name = os.path.join(args.dir_model, 'log.txt')
args.store()
dataset_train = get_dataset(args.dataset_train_path)
print('The number of datasets:')
print('dataset_train: %d'%(len(dataset_train)))
# ToDo: loading a model from dir_base_model
if args.gpuid >= 0:
cuda.get_device(args.gpuid).use()
target = NeuralModel()
if args.gpuid >= 0:
target.to_gpu(args.gpuid)
target_opt = chainer.optimizers.SGD(lr=args.train_sgd_lr)
target_opt.setup(target)
target_opt.add_hook(WeightDecay(rate=args.train_weight_decay_rate))
target_opt.add_hook(GradientClipping(args.train_gradient_clipping_norm))
def save_target(save_path):
target.to_cpu()
serializers.save_npz(save_path, target)
if args.gpuid >= 0:
target.to_gpu(args.gpuid)
def save_charvec(save_path):
target.to_cpu()
charvec_dict = {}
for v, k in dataset_train:
mu, ln_var = target.encode(v[None,:,:])
charvec_dict[k] = mu.data[0]
with open(save_path, 'wb') as f:
pickle.Pickler(f).dump(charvec_dict)
if not(args.decode_samples is None):
for i in range(len(args.decode_samples)):
c = args.decode_samples[i]
array = (255*target.decode(charvec_dict[c][None, :]).data[0]).astype('uint8')
img_size = array.shape[0]
array = np.broadcast_to(array[:,:,None], (img_size, img_size, 3))
Image.fromarray(array).save(save_path + str(i) + '.bmp')
if args.gpuid >= 0:
target.to_gpu(args.gpuid)
print('start training')
for ep_id in range(args.train_max_epoch):
np.random.shuffle(dataset_train)
C = args.kld_function[ep_id]
epoch_loss = 0
epoch_rec_loss = 0
epoch_kld_loss = 0
for mb_id in range(0, len(dataset_train), args.minibatch_size_train):
mb = dataset_train[mb_id: mb_id + args.minibatch_size_train]
mb = [v for v, k in mb]
x = target.xp.asarray(np.stack(mb))
loss, rec_loss, kld_loss = target(x, C=C)
target.zerograds()
loss.backward()
target_opt.update()
loss.unchain_backward()
epoch_loss += float(loss.data)*len(mb)
epoch_rec_loss += rec_loss*len(mb)
epoch_kld_loss += kld_loss*len(mb)
epoch_loss /= len(dataset_train)
epoch_rec_loss /= len(dataset_train)
epoch_kld_loss /= len(dataset_train)
record = (ep_id, C, epoch_loss, epoch_rec_loss, epoch_kld_loss)
print('ep=%d C=%.4f loss=%.4f rec_loss=%.4f kld_loss=%.4f'%record)
with open(log_file_name, 'a') as f:
f.write('ep=%d C=%.4f loss=%.4f rec_loss=%.4f kld_loss=%.4f\n'%record)
# MODEL STORING
if ep_id % args.save_each == 0:
save_target(os.path.join(args.dir_model, 'trained_%d.model'%(ep_id)))
save_charvec(os.path.join(args.dir_model, 'charvec_%d.pklb'%(ep_id)))
print('model saved.')
print('training done.')
save_target(os.path.join(args.dir_model, 'trained_end.model'))
save_charvec(os.path.join(args.dir_model, 'charvec_end.pklb'))
print('the last model saved.')
def get_dataset(pathname):
"""[(img(sizeh,sizew), key)]"""
char_images = {}
with open(pathname, 'rb') as f:
char_images = pickle.Unpickler(f).load()
pair_list = [(v[:,:], k) for k, v in char_images.items()]
return pair_list
if __name__ == '__main__':
args = ArgSpace()
main(args)