-
Notifications
You must be signed in to change notification settings - Fork 51
/
utils.py
194 lines (144 loc) · 6.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
import os
import cv2
import tensorflow as tf
import random
from glob import glob
class Image_data:
def __init__(self, img_height, img_width, channels, dataset_path, augment_flag):
self.img_height = img_height
self.img_width = img_width
self.channels = channels
self.augment_flag = augment_flag
self.dataset_path = dataset_path
def image_processing(self, filename):
x = tf.io.read_file(filename)
x_decode = tf.image.decode_jpeg(x, channels=self.channels, dct_method='INTEGER_ACCURATE')
img = tf.image.resize(x_decode, [self.img_height, self.img_width])
img = preprocess_fit_train_image(img)
if self.augment_flag :
augment_height_size = self.img_height + (30 if self.img_height == 256 else int(self.img_height * 0.1))
augment_width_size = self.img_width + (30 if self.img_width == 256 else int(self.img_width * 0.1))
seed = random.randint(0, 2 ** 31 - 1)
condition = tf.greater_equal(tf.random.uniform(shape=[], minval=0.0, maxval=1.0), 0.5)
img = tf.cond(pred=condition,
true_fn=lambda : augmentation(img, augment_height_size, augment_width_size, seed),
false_fn=lambda : img)
return img
def preprocess(self):
self.train_A_dataset = glob(os.path.join(self.dataset_path, 'trainA') + '/*.png') + glob(os.path.join(self.dataset_path, 'trainA') + '/*.jpg')
self.train_B_dataset = glob(os.path.join(self.dataset_path, 'trainB') + '/*.png') + glob(os.path.join(self.dataset_path, 'trainB') + '/*.jpg')
def load_test_image(image_path, img_width, img_height, img_channel):
if img_channel == 1 :
img = cv2.imread(image_path, flags=cv2.IMREAD_GRAYSCALE)
else :
img = cv2.imread(image_path, flags=cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, dsize=(img_width, img_height))
if img_channel == 1 :
img = np.expand_dims(img, axis=0)
img = np.expand_dims(img, axis=-1)
else :
img = np.expand_dims(img, axis=0)
img = img/127.5 - 1
return img
def load_images(image_path, img_hegiht, img_width, img_channel):
x = tf.io.read_file(image_path)
x_decode = tf.image.decode_jpeg(x, channels=img_channel, dct_method='INTEGER_ACCURATE')
img = tf.image.resize(x_decode, [img_hegiht, img_width])
img = preprocess_fit_train_image(img)
return img
def adjust_dynamic_range(images, range_in, range_out, out_dtype):
scale = (range_out[1] - range_out[0]) / (range_in[1] - range_in[0])
bias = range_out[0] - range_in[0] * scale
images = images * scale + bias
images = tf.clip_by_value(images, range_out[0], range_out[1])
images = tf.cast(images, dtype=out_dtype)
return images
def preprocess_fit_train_image(images):
images = adjust_dynamic_range(images, range_in=(0.0, 255.0), range_out=(-1.0, 1.0), out_dtype=tf.dtypes.float32)
return images
def postprocess_images(images):
images = adjust_dynamic_range(images, range_in=(-1.0, 1.0), range_out=(0.0, 255.0), out_dtype=tf.dtypes.float32)
images = tf.cast(images, dtype=tf.dtypes.uint8)
return images
def augmentation(image, augment_height, augment_width, seed):
ori_image_shape = tf.shape(image)
image = tf.image.random_flip_left_right(image, seed=seed)
image = tf.image.resize(image, [augment_height, augment_width])
image = tf.image.random_crop(image, ori_image_shape, seed=seed)
return image
def save_images(images, size, image_path):
# size = [height, width]
return imsave(inverse_transform(images), size, image_path)
def inverse_transform(images):
return ((images+1.) / 2) * 255.0
def imsave(images, size, path):
images = merge(images, size)
images = cv2.cvtColor(images.astype('uint8'), cv2.COLOR_RGB2BGR)
return cv2.imwrite(path, images)
def merge(images, size):
h, w = images.shape[1], images.shape[2]
img = np.zeros((h * size[0], w * size[1], 3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[h*j:h*(j+1), w*i:w*(i+1), :] = image
return img
def return_images(images, size) :
x = merge(images, size)
return x
def check_folder(log_dir):
if not os.path.exists(log_dir):
os.makedirs(log_dir)
return log_dir
def str2bool(x):
return x.lower() in ('true')
def pytorch_xavier_weight_factor(gain=0.02) :
factor = gain * gain
mode = 'fan_avg'
return factor, mode
def pytorch_kaiming_weight_factor(a=0.0, activation_function='relu') :
if activation_function == 'relu' :
gain = np.sqrt(2.0)
elif activation_function == 'leaky_relu' :
gain = np.sqrt(2.0 / (1 + a ** 2))
elif activation_function =='tanh' :
gain = 5.0 / 3
else :
gain = 1.0
factor = gain * gain
mode = 'fan_in'
return factor, mode
def automatic_gpu_usage() :
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)
def multiple_gpu_usage():
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
# Create 2 virtual GPUs with 1GB memory each
try:
tf.config.experimental.set_virtual_device_configuration(
gpus[0],
[tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096),
tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)])
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPU,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Virtual devices must be set before GPUs have been initialized
print(e)
def moving_average(model, model_test, beta=0.999):
for param, param_test in zip(model.trainable_weights, model_test.trainable_weights):
param_test.assign(lerp(param, param_test, beta))
def lerp(a, b, t):
out = a + (b - a) * t
return out