-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain.py
158 lines (140 loc) · 5.22 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import threading
import multiprocessing
import argparse
import cv2
import gym
import copy
import os
import time
import atari_constants
import box_constants
import numpy as np
import tensorflow as tf
from rlsaber.log import TfBoardLogger, dump_constants
from rlsaber.trainer import BatchTrainer
from rlsaber.env import EnvWrapper, BatchEnvWrapper, NoopResetEnv, EpisodicLifeEnv, MaxAndSkipEnv
from rlsaber.preprocess import atari_preprocess
from network import make_network
from agent import Agent
from scheduler import LinearScheduler, ConstantScheduler
from datetime import datetime
def main():
date = datetime.now().strftime('%Y%m%d%H%M%S')
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='PongNoFrameskip-v4')
parser.add_argument('--load', type=str)
parser.add_argument('--logdir', type=str, default=date)
parser.add_argument('--render', action='store_true')
parser.add_argument('--demo', action='store_true')
args = parser.parse_args()
outdir = os.path.join(os.path.dirname(__file__), 'results/' + args.logdir)
if not os.path.exists(outdir):
os.makedirs(outdir)
logdir = os.path.join(os.path.dirname(__file__), 'logs/' + args.logdir)
env_name = args.env
tmp_env = gym.make(env_name)
is_atari = len(tmp_env.observation_space.shape) != 1
if not is_atari:
observation_space = tmp_env.observation_space
constants = box_constants
if isinstance(tmp_env.action_space, gym.spaces.Box):
num_actions = tmp_env.action_space.shape[0]
else:
num_actions = tmp_env.action_space.n
state_shape = [observation_space.shape[0], constants.STATE_WINDOW]
state_preprocess = lambda s: s
reward_preprocess = lambda r: r / 10.0
# (window_size, dim) -> (dim, window_size)
phi = lambda s: np.transpose(s, [1, 0])
else:
constants = atari_constants
num_actions = tmp_env.action_space.n
state_shape = constants.STATE_SHAPE + [constants.STATE_WINDOW]
def state_preprocess(state):
state = atari_preprocess(state, constants.STATE_SHAPE)
state = np.array(state, dtype=np.float32)
return state / 255.0
reward_preprocess = lambda r: np.clip(r, -1.0, 1.0)
# (window_size, H, W) -> (H, W, window_size)
phi = lambda s: np.transpose(s, [1, 2, 0])
# flag of continuous action space
continuous = isinstance(tmp_env.action_space, gym.spaces.Box)
upper_bound = tmp_env.action_space.high if continuous else None
# save settings
dump_constants(constants, os.path.join(outdir, 'constants.json'))
sess = tf.Session()
sess.__enter__()
model = make_network(
constants.CONVS, constants.FCS, use_lstm=constants.LSTM,
padding=constants.PADDING, continuous=continuous)
# learning rate with decay operation
if constants.LR_DECAY == 'linear':
lr = LinearScheduler(constants.LR, constants.FINAL_STEP, 'lr')
epsilon = LinearScheduler(
constants.EPSILON, constants.FINAL_STEP, 'epsilon')
else:
lr = ConstantScheduler(constants.LR, 'lr')
epsilon = ConstantScheduler(constants.EPSILON, 'epsilon')
agent = Agent(
model,
num_actions,
nenvs=constants.ACTORS,
lr=lr,
epsilon=epsilon,
gamma=constants.GAMMA,
lam=constants.LAM,
lstm_unit=constants.LSTM_UNIT,
value_factor=constants.VALUE_FACTOR,
entropy_factor=constants.ENTROPY_FACTOR,
time_horizon=constants.TIME_HORIZON,
batch_size=constants.BATCH_SIZE,
grad_clip=constants.GRAD_CLIP,
state_shape=state_shape,
epoch=constants.EPOCH,
phi=phi,
use_lstm=constants.LSTM,
continuous=continuous,
upper_bound=upper_bound
)
saver = tf.train.Saver()
if args.load:
saver.restore(sess, args.load)
# create environemtns
envs = []
for i in range(constants.ACTORS):
env = gym.make(args.env)
env.seed(constants.RANDOM_SEED)
if is_atari:
env = NoopResetEnv(env, noop_max=30)
env = MaxAndSkipEnv(env)
env = EpisodicLifeEnv(env)
wrapped_env = EnvWrapper(
env,
r_preprocess=reward_preprocess,
s_preprocess=state_preprocess
)
envs.append(wrapped_env)
batch_env = BatchEnvWrapper(envs)
sess.run(tf.global_variables_initializer())
summary_writer = tf.summary.FileWriter(logdir, sess.graph)
logger = TfBoardLogger(summary_writer)
logger.register('reward', dtype=tf.float32)
end_episode = lambda r, s, e: logger.plot('reward', r, s)
def after_action(state, reward, global_step, local_step):
if global_step % 10 ** 6 == 0:
path = os.path.join(outdir, 'model.ckpt')
saver.save(sess, path, global_step=global_step)
trainer = BatchTrainer(
env=batch_env,
agent=agent,
render=args.render,
state_shape=state_shape[:-1],
state_window=constants.STATE_WINDOW,
final_step=constants.FINAL_STEP,
after_action=after_action,
end_episode=end_episode,
training=not args.demo
)
trainer.start()
if __name__ == '__main__':
main()