-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiterators.hpp
284 lines (250 loc) · 7.46 KB
/
iterators.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#ifndef ITERATORS_HPP
#define ITERATORS_HPP
#include "node.hpp"
#include <stack>
#include <queue>
#include <iterator>
#include <set>
#include <iostream>
// Pre-order Iterator: Visits the root node first, then recursively visits each subtree
template <typename T>
class PreOrderIterator
{
std::stack<Node<T> *> nodes; // Stack to manage nodes for traversal
public:
using iterator_category = std::input_iterator_tag;
using value_type = Node<T>;
using difference_type = std::ptrdiff_t;
using pointer = Node<T> *;
using reference = Node<T> &;
PreOrderIterator(Node<T> *root)
{
if (root != nullptr)
nodes.push(root);
}
Node<T> *operator*()
{
return nodes.top();
}
PreOrderIterator &operator++()
{
Node<T> *node = nodes.top();
nodes.pop();
const auto &children = node->getChildren();
for (auto it = children.rbegin(); it != children.rend(); ++it)
{
nodes.push(*it); // Push children in reverse order to process them in correct order
}
return *this;
}
bool operator!=(const PreOrderIterator &other) const
{
return !nodes.empty() || !other.nodes.empty();
}
};
// Post-order Iterator: Visits all subtrees first, then the root node
template <typename T>
class PostOrderIterator
{
std::stack<Node<T> *> nodes; // Stack to manage nodes for traversal
std::set<Node<T> *> visited; // Set to keep track of visited nodes
void pushChildren(Node<T> *node)
{
const auto &children = node->getChildren();
for (auto it = children.rbegin(); it != children.rend(); ++it)
{
nodes.push(*it); // Push children in reverse order to process them in correct order
}
}
public:
using iterator_category = std::input_iterator_tag;
using value_type = Node<T>;
using difference_type = std::ptrdiff_t;
using pointer = Node<T> *;
using reference = Node<T> &;
PostOrderIterator(Node<T> *root)
{
if (root != nullptr)
{
nodes.push(root);
}
}
Node<T> *operator*()
{
while (!nodes.empty())
{
Node<T> *node = nodes.top();
if (visited.find(node) == visited.end())
{
pushChildren(node);
visited.insert(node);
}
else
{
return node;
}
}
return nullptr;
}
PostOrderIterator &operator++()
{
nodes.pop();
return *this;
}
bool operator!=(const PostOrderIterator &other) const
{
return !nodes.empty() || !other.nodes.empty();
}
};
// In-order Iterator: Visits the left subtree, then the root, then the right subtree
template <typename T>
class InOrderIterator
{
std::stack<Node<T> *> nodes; // Stack to manage nodes for traversal
// Helper function to push all left children of the given node onto the stack
void pushLeft(Node<T> *node)
{
while (node)
{
nodes.push(node);
const auto &children = node->getChildren();
if (!children.empty())
{
node = children.front(); // Move to the leftmost child
}
else
{
break;
}
}
}
public:
using iterator_category = std::input_iterator_tag;
using value_type = Node<T>;
using difference_type = std::ptrdiff_t;
using pointer = Node<T> *;
using reference = Node<T> &;
// Constructor: Initialize the stack with the leftmost nodes starting from the root
InOrderIterator(Node<T> *root)
{
if (root != nullptr)
pushLeft(root);
}
// Dereference operator: Returns the current node
Node<T> *operator*()
{
return nodes.top();
}
// Increment operator: Moves to the next node in in-order
InOrderIterator &operator++()
{
if (nodes.empty())
return *this;
Node<T> *node = nodes.top();
nodes.pop();
const auto &children = node->getChildren();
if (children.size() > 1)
{ // Check if there is a right child
pushLeft(children[1]); // Push all left children of the right child
}
return *this;
}
// Comparison operator: Checks if the stack is empty
bool operator!=(const InOrderIterator &other) const
{
return !nodes.empty() || !other.nodes.empty();
}
};
// Breadth-First Search (BFS) Iterator: Visits nodes level by level
template <typename T, std::size_t k = 2>
class BFSIterator
{
std::queue<Node<T> *> nodes; // Queue to manage nodes for traversal
public:
using iterator_category = std::input_iterator_tag;
using value_type = Node<T>;
using difference_type = std::ptrdiff_t;
using pointer = Node<T> *;
using reference = Node<T> &;
// Constructor: Initialize the queue with the root node
BFSIterator(Node<T> *root)
{
if (root != nullptr)
nodes.push(root);
}
// Dereference operator: Returns the current node
Node<T> *operator*()
{
return nodes.front();
}
// Increment operator: Moves to the next node in BFS order
BFSIterator &operator++()
{
Node<T> *node = nodes.front();
nodes.pop();
for (Node<T> *child : node->getChildren())
{
nodes.push(child); // Push all children to the queue
}
return *this;
}
// Comparison operator: Checks if the queue is empty
bool operator!=(const BFSIterator &other) const
{
return !nodes.empty() || !other.nodes.empty();
}
};
// Depth-First Search (DFS) Iterator: Visits nodes depth-wise
template <typename T, std::size_t k = 2>
class DFSIterator
{
std::stack<Node<T> *> nodes; // Stack to manage nodes for traversal
public:
using iterator_category = std::input_iterator_tag;
using value_type = Node<T>;
using difference_type = std::ptrdiff_t;
using pointer = Node<T> *;
using reference = Node<T> &;
// Constructor: Initialize the stack with the root node
DFSIterator(Node<T> *root)
{
if (root != nullptr)
nodes.push(root);
}
// Dereference operator: Returns the current node
Node<T> *operator*()
{
return nodes.top();
}
// Increment operator: Moves to the next node in DFS order
DFSIterator &operator++()
{
Node<T> *node = nodes.top();
nodes.pop();
const auto &children = node->getChildren();
for (auto it = children.rbegin(); it != children.rend(); ++it)
{
nodes.push(*it); // Push children in reverse order to process them in correct order
}
return *this;
}
// Comparison operator: Checks if the stack is empty
bool operator!=(const DFSIterator &other) const
{
return !nodes.empty() || !other.nodes.empty();
}
};
// Min Heap Iterator: BFS traversal on elements (going through vector in order)
template <typename T>
class MinHeapIterator
{
using Heap_Iterator = typename std::vector<T>::iterator;
Heap_Iterator current;
public:
MinHeapIterator(Heap_Iterator start) : current(start) {}
T& operator*() { return *current; }
Heap_Iterator& operator++() { return ++current; }
bool operator==(const MinHeapIterator& other) { return current == other.current; }
bool operator!=(const MinHeapIterator& other) { return current != other.current; }
};
#endif // ITERATORS_HPP