-
Notifications
You must be signed in to change notification settings - Fork 20
/
outlier_exposure.py
103 lines (73 loc) · 3.45 KB
/
outlier_exposure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import numpy as np
import torch
from sklearn.metrics import roc_auc_score
import torch.optim as optim
import argparse
import utils
def train_model(model, train_loader, outliers_loader, test_loader, device, epochs, lr):
model.eval()
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)
bce = torch.nn.BCELoss()
for epoch in range(epochs):
running_loss = run_epoch(model, train_loader, outliers_loader, optimizer, bce, device)
print('Epoch: {}, Loss: {}'.format(epoch + 1, running_loss))
auc = get_score(model, device, test_loader)
print('Epoch: {}, AUROC is: {}'.format(epoch + 1, auc))
def run_epoch(model, train_loader, outliers_loader, optimizer, bce, device):
running_loss = 0.0
for i, (imgs, _) in enumerate(train_loader):
imgs = imgs.to(device)
out_imgs, _ = next(iter(outliers_loader))
outlier_im = out_imgs.to(device)
optimizer.zero_grad()
pred, _ = model(imgs)
outlier_pred, _ = model(outlier_im)
batch_1 = pred.size()[0]
batch_2 = outlier_pred.size()[0]
labels = torch.zeros(size=(batch_1 + batch_2,), device=device)
labels[batch_1:] = torch.ones(size=(batch_2,))
loss = bce(torch.sigmoid(torch.cat([pred, outlier_pred])), labels)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1e-3)
optimizer.step()
running_loss += loss.item()
return running_loss / (i + 1)
def get_score(model, device, test_loader):
model.eval()
anom_labels = []
predictions = []
with torch.no_grad():
for imgs, labels in test_loader:
imgs, labels = imgs.to(device), labels.numpy()
pred, _ = model(imgs)
pred = torch.sigmoid(pred)
batch_size = imgs.shape[0]
for j in range(batch_size):
predictions.append(pred[j].detach().cpu().numpy())
anom_labels.append(labels[j])
test_set_predictions = np.array(predictions)
test_labels = np.array(anom_labels)
auc = roc_auc_score(test_labels, test_set_predictions)
return auc
def main(args):
print('Dataset: {}, Label: {}, LR: {}'.format(args.dataset, args.label, args.lr))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = utils.get_resnet_model(resnet_type=args.resnet_type)
# Change last layer
model.fc = torch.nn.Linear(args.latent_dim_size, 1)
model = model.to(device)
utils.freeze_parameters(model, train_fc=True)
train_loader, test_loader = utils.get_loaders(dataset=args.dataset, label_class=args.label, batch_size=args.batch_size)
outliers_loader = utils.get_outliers_loader(args.batch_size)
train_model(model, train_loader, outliers_loader, test_loader, device, args.epochs, args.lr)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='')
parser.add_argument('--dataset', default='cifar10')
parser.add_argument('--epochs', default=50, type=int, metavar='epochs', help='number of epochs')
parser.add_argument('--label', default=0, type=int, help='The normal class')
parser.add_argument('--lr', type=float, default=1e-1, help='The initial learning rate.')
parser.add_argument('--resnet_type', default=152, type=int, help='which resnet to use')
parser.add_argument('--latent_dim_size', default=2048, type=int)
parser.add_argument('--batch_size', default=32, type=int)
args = parser.parse_args()
main(args)