Inspired by Rails console, PyFireConsole provides a seamless interface to Google's Firestore in Python, simplifying tasks such as connection, ORM, and data associations. It makes managing Firestore a breeze.
- Model Definition and ORM: Define your Firestore data models within Python and use object-relational mapping (ORM) for easier data manipulation and querying.
- Data Associations: Effortlessly manage relationships between your Firestore data models.
- Interactive Console: Inspired by the Rails console, PyFireConsole provides a console for interactive data manipulation and querying, making it simple to perform tasks on your Firestore data.
pip install pyfireconsole
First of all, you need to initialize FirestoreConnection
with your project id.
# Initialize FirestoreConnection using your default credentials of gcloud. (use `gcloud auth application-default login` or set GOOGLE_APPLICATION_CREDENTIALS)
FirestoreConnection().initialize(project_id="YOUR-PROJECT-ID")
# Or you can specify service_account_key_path
FirestoreConnection().initialize(service_account_key_path="./service-account.json", project_id="YOUR-PROJECT-ID")
Like Rails, you can define your model class by inheriting PyfireDoc
class.
from pyfireconsole.models.pyfire_model import PyfireDoc
class User(PyfireDoc):
name: str
email: str
role: str = "user"
# Find a document by id
user = User.find("XXX")
#=> User[users/XXX](id='XXX', name='John', email='john@example.com', role='user')
# Nested document can be accessed by path
user = User.find("companies/ZZZ/users/YYY")
#=> User[companies/ZZZ/users/YYY](id='YYY', name='John', email='john@example.com', role='user')
You can use where
method to query documents.
admin_users = User.where("role", "==", "admin")
#=> PyfireCollection<User>[users]
# admin_user is iterable
for user in admin_users:
print(user)
#=> User[users/YYYYYYYYYY](id='YYYYYYYYYY', name='Mary', email='mary@example.com', role='admin')
You can define sub collection of a document by using PyfireCollection
class.
from pyfireconsole.models.pyfire_model import PyfireCollection, DocumentRef, PyfireDoc
# Tag is sub collection of Book
class Tag(PyfireDoc):
name: str
class Book(PyfireDoc):
title: str
user_id: str
published_at: datetime
tags: PyfireCollection[Tag] = PyfireCollection(Tag) # Specify sub collection type
book = Book.find("XXXX")
for tag in book.tags:
print(tag)
#=> Tag[books/XXXX/tags/YYYY](id='YYYY', name='Python')
You can define data associations by using has_many
and belongs_to
decorators.
Now book.user
returns User
object, and user.books
returns PyfireCollection[Book]
object.
from pyfireconsole.models.association import belongs_to, has_many, resolve_pyfire_model_names
from pyfireconsole.models.pyfire_model import PyfireCollection, DocumentRef, PyfireDoc
@has_many('Book', db_field="user_id", attr_name="my_books")
class User(PyfireDoc):
name: str
email: str
class Tag(PyfireDoc):
name: str
@belongs_to(User, "user_id")
class Book(PyfireDoc):
title: str
user_id: str
published_at: datetime
tags: PyfireCollection[Tag] = PyfireCollection(Tag)
# call this to resolve model names (this is because of python's circular import problem)
resolve_pyfire_model_names(globals())
user = User.find("YYYY")
user.my_books
=> PyfireCollection[Book][books]
user.my_books.first.user
=> User[users/XXXX](id='XXXX', name='John', email="john@example.com")
You can convert PyfireDoc object to json serializable dict by using as_json
method.
# dump all admin users, not including sub collection
User.all().as_json()
# dump all admin users, not including sub collection
User.where("role", "==", "admin").as_json()
# dump all admin users, including sub collection
User.where("role", "==", "admin").as_json(recursive=True)
# you can also dump custom attributes
class User(PyfireDoc):
name: str
email: str
def email_domain(self):
return self.email.split("@")[1]
User.where("role", "==", "admin").as_json(recursive=True, include=["email_domain"])
You can instantiate empty document by using allow_empty
option. The sub collection of empty document can be accessed.
# This is empty document which doesn't exist in firestore but sub collection exists.
user = User.find("XXXXX", allow_empty=True)
# You can't access empty document's attributes
# user.name => AttributeError: 'User' object has no attribute 'name'
# You can access sub collection of empty document
print([n.title for n in user.books])
We assume that you have a firestore database with the following structure:
- users Collection
- {user_id} Document
- name: str
- email: str
- publishers Collection
- {publisher_id} Document
- name: str
- address: str
- books Collection
- {book_id} Document
- title: str
- user_id: str
- published_at: datetime
- authors: list[str]
- tags: Sub Collection
- {tag_id} Document
- name: str
- publisher_ref: Reference
from datetime import datetime
from typing import Optional
from pyfireconsole.models.association import belongs_to
from pyfireconsole.models.pyfire_model import PyfireCollection, DocumentRef, PyfireDoc
from pyfireconsole.db.connection import FirestoreConnection
# Define models
# PyfireDoc is a subclass of Pydantic(2.x) BaseModel. You can use Pydantic's features.
@has_many('Book', "user_id")
class User(PyfireDoc):
name: str
email: str
class Publisher(PyfireDoc):
name: str
address: Optional[str]
class Tag(PyfireDoc):
name: str
@belongs_to(User, "user_id")
class Book(PyfireDoc):
title: str
user_id: str
published_at: datetime
authors: list[str]
tags: PyfireCollection[Tag] = PyfireCollection(Tag)
publisher_ref: DocumentRef[Publisher]
# Initialize FirestoreConnection using your default credentials of gcloud. (use `gcloud auth application-default login` or set GOOGLE_APPLICATION_CREDENTIALS)
FirestoreConnection().initialize(project_id="YOUR-PROJECT-ID")
# Or you can specify service_account_key_path
# FirestoreConnection().initialize(service_account_key_path="./service-account.json", project_id="YOUR-PROJECT-ID")
print("==================== find ====================")
book = Book.find("XlvQHeGi3cODbI4MQpI3") # => Book
print(book.model_dump()) # => dict
print(f"ID: {book.id} | Title: {book.title} | Authors: {book.authors} | Published At: {book.published_at.isoformat()}")
print("==================== belongs_to ====================")
print(book.user) # => User
print(book.user.name) # => str
print("==================== reference ====================")
print(book.publisher_ref) # => DocumentRef
print(book.publisher_ref.path) # => str (So far, we can't access publisher_ref.name directly for ref type)
print("==================== where ====================")
print(Book.where("title", "==", "test")) # => Book[] Make sure to create index in firestore for compound queries
print("==================== where & order ====================")
print(Book.where("title", "==", "test").order("published_at", "ASCENDING")) # => Book[] Make sure to create index in firestore for compound queries
print("==================== has_many ====================")
print(book.tags) # => PyfireCollection[Tag]
print(book.tags.first) # => Tag
PyFireConsole comes with an interactive console that allows developer to view and manipulate Firestore data in a live and easily. This feature is inspired by the Rails console.
First, you need to define your models.
# app/models/models.py
from datetime import datetime
from typing import Optional
from pyfireconsole.models.association import belongs_to, has_many, resolve_pyfire_model_names
from pyfireconsole.models.pyfire_model import PyfireCollection, DocumentRef, PyfireDoc
from pyfireconsole.db.connection import FirestoreConnection
from pyfireconsole import PyFireConsole
@has_many('Book', "user_id")
class User(PyfireDoc):
name: str
email: str
class Publisher(PyfireDoc):
name: str
address: Optional[str]
class Tag(PyfireDoc):
name: str
@belongs_to(User, "user_id")
class Book(PyfireDoc):
title: str
user_id: str
published_at: datetime
authors: list[str]
tags: PyfireCollection[Tag] = PyfireCollection(Tag)
publisher_ref: DocumentRef[Publisher]
Start interactive console by using pyfireconsole
command.
pyfireconsole --model-dir app/models
This command loads all python classes in app/models
directory and starts interactive console.
- --model-di: model directory path
- --project-id: project id (optional)
- --service-account-key-path: service account key path (optional)
You can also call PyFireConsole().run()
from your code.
from datetime import datetime
from typing import Optional
from pyfireconsole.models.association import belongs_to, has_many, resolve_pyfire_model_names
from pyfireconsole.models.pyfire_model import PyfireCollection, DocumentRef, PyfireDoc
from pyfireconsole.db.connection import FirestoreConnection
from pyfireconsole import PyFireConsole
@has_many('Book', "user_id")
class User(PyfireDoc):
name: str
email: str
class Publisher(PyfireDoc):
name: str
address: Optional[str]
class Tag(PyfireDoc):
name: str
@belongs_to(User, "user_id")
class Book(PyfireDoc):
title: str
user_id: str
published_at: datetime
authors: list[str]
tags: PyfireCollection[Tag] = PyfireCollection(Tag)
publisher_ref: DocumentRef[Publisher]
# Resolve PyfireModel names
# Call this function when you define your models by using str class name. e.g. @has_many('Book', "user_id")
resolve_pyfire_model_names(globals())
FirestoreConnection().initialize(project_id="YOUR_PROJECT_ID")
PyFireConsole().run()
Through the interactive console, you can conveniently test and experiment with your Firestore data models.
Your contributions to PyFireConsole are warmly welcomed! Feel free to submit a pull request directly if you have any improvements or features to suggest. For any questions or issues, please create an issue on Github. Thank you for your interest in improving PyFireConsole!
PyFireConsole is released under the MIT License.
This means you are free to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the software. This permission is granted provided that the above copyright notice and this permission notice are included in all copies or substantial portions of the software.