-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
53 lines (45 loc) · 1.89 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import matplotlib.pyplot as plt
from datasets import load_dataset
import re
from torch.utils.data import DataLoader
from model import GPT2
def load_model(config, path, device='cpu'):
model = GPT2(config, device=device)
model.load_state_dict(torch.load(path, map_location=torch.device('cpu')))
model.to(device)
model.eval()
return model
def load_data(config, batch_size, n, device='cpu'):
dataset = load_dataset(config.name)
train_data = DataLoader(dataset["train"][:n]["text"], batch_size=batch_size, shuffle=True, pin_memory=True, pin_memory_device=device)
val_data = DataLoader(dataset["validation"][:n]["text"], batch_size=batch_size, shuffle=True, pin_memory=True, pin_memory_device=device)
return train_data, val_data
def clean_string(input_string):
cleaned_string = re.sub(r'[^\w\s.,]', '', input_string)
cleaned_string = re.sub(r'\s+', ' ', cleaned_string)
cleaned_string = cleaned_string.replace('\n', '')
return cleaned_string
@torch.no_grad()
def estimate_loss(model, train_data, val_data, encoder, eval_steps=50):
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_steps)
for k in range(eval_steps):
data = train_data if split == 'train' else val_data
tokens = encoder(next(iter(data))[0], max_length=model.block_size, padding="max_length", truncation=True)
_, loss = model(tokens, tokens)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
def plot_losses(losses):
train_losses = [o['train'] for o in losses if o.get('train') is not None]
valid_losses = [o['valid'] for o in losses if o.get('valid') is not None]
plt.plot(train_losses, label='Training Loss')
plt.plot(valid_losses, label='Validation Loss')
plt.ylabel('Loss')
plt.title('Losses')
plt.legend()
plt.show()