-
Notifications
You must be signed in to change notification settings - Fork 30
/
DESCRIPTION
executable file
·127 lines (127 loc) · 2.8 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
Package: metacell
Title: Meta cell analysis for single cell RNA-seq data
Version: 0.3.7
Authors@R:
person(given = "Amos",
family = "Tanay",
role = c("aut", "cre"),
email = "amos.tanay@weizmann.ac.il")
Description: The MetaCell R package facilitates analysis of
single cell RNA-seq UMI matrices by computing partitions of a cell
similarity graph into small (~20-200 typically) homogeneous groups of
cells which are defined as metacells (MCs). The derived MCs are then
used for building different representations of the data, allowing
matrix or 2D graph visualization forming a basis for analysis of cell
types, subtypes, transcriptional gradients, cell-cycle variation, gene
modules and their regulatory models and more. More details on the
usage of the MetaCell pipeline is available in the package vignettes,
and in papers using it.
License: MIT + file LICENSE
URL: https://github.com/tanaylab/metacell
BugReports: https://github.com/tanaylab/metacell/issues
Depends:
R (>= 3.5.0)
Imports:
cluster,
cowplot,
data.table,
dbscan,
doMC,
dplyr,
entropy,
ggplot2,
graph,
igraph,
KernSmooth,
magrittr,
Matrix,
matrixStats,
methods,
parallel,
pdist,
pheatmap,
plyr,
RColorBrewer,
RCurl,
Rgraphviz,
svglite,
slam,
tidyr,
tgconfig,
tgstat,
tgutil,
umap,
zoo
Suggests:
knitr,
rmarkdown,
SingleCellExperiment,
S4Vectors
VignetteBuilder:
knitr
Remotes:
tanaylab/tgconfig,
tanaylab/tgutil,
bioc::release/Rgraphviz,
bioc::release/graph
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.2.0
Collate:
'utils-pipe.R'
'mc_plot_confusion.r'
'atlas_project.r'
'atlas.r'
'cgraph_gcor_norm.r'
'cgraph_knn_mcnorm.r'
'coclust.r'
'coclust_graph_cov.r'
'mc2d_force_knn.r'
'mc2d_plot.r'
'mc_confusion.r'
'mc_from_coclust.r'
'mc_outliers.r'
'mc_apx_qc.r'
'mc_plot_cross_mc.r'
'pipe_vanila.r'
'scmat_gcors.r'
'cgraph.r'
'cgraph_knn.r'
'cgraph_extmat.r'
'gset_mc.r'
'mc.r'
'mc2d.r'
'mc_colorize.r'
'mc_export_tab.r'
'mc_graphcov.r'
'mc_plot_marks.r'
'mc_plot_by_factor.r'
'mgraph.r'
'mgraph_knn.r'
'mgraph_logistic.r'
'mincost_flow.r'
'mctnetwork.r'
'mctnetwork_clust.r'
'mctnetwork_plot_net.r'
'gset.r'
'gset_clust.r'
'gset_feat_select.r'
'gset_plot_mats.r'
'gstats_report.r'
'scmat_ccor.r'
'scmat_10x.r'
'scmat_mars.r'
'scmat_batch_stat.r'
'scmat.r'
'scfigs.r'
'gstats.r'
'stat_utils.r'
'utils.r'
'scdb.r'
'mc_apx_qc_cv.r'
'mc_hierarchy.r'
'mc_plot_vgels.r'
'scmat_import.r'
'gene_names_xref_util.r'
'metacell-package.r'
'zzz.r'