-
Notifications
You must be signed in to change notification settings - Fork 15
/
modules.py
executable file
·223 lines (186 loc) · 6.7 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import numpy as np
import pickle
import os
from subprocess import Popen, PIPE
import time
import datetime
from sklearn.utils import shuffle
def noremDiv(nu, de):
if nu % de == 0:
return nu // de
else:
return nu // de + 1
def batchDiv(nu, de):
if nu % de == 0:
return (nu // de) - 1
else:
return nu // de + 1
def cprint(st, c='r'):
if c=='r':
CRED = '\033[91m'
elif c=='g':
CRED = '\033[92m'
elif c=='b':
CRED = '\033[94m'
elif c=='y':
CRED = '\033[93m'
CEND = '\033[0m'
print(CRED + st + CEND)
def timeStamped(fname, fmt='%Y-%m-%d-%H-%M-%S_{fname}'):
return datetime.datetime.now().strftime(fmt).format(fname=fname)
def rsc(x):
return x.split(':')[0]
def bashGet(bash_command):
p = Popen(bash_command.split(' '), stdin=PIPE, stdout=PIPE, stderr=PIPE)
output, err = p.communicate()
txtout = output.decode('utf-8')
return txtout
def dictConvert(inDict):
key_list = list(inDict.keys())
out = {}
for t in key_list:
# print(inDict[t])
D = inDict[t].split('_')# speaker, start, dur, word
out.update({t: [D[0], int(100*float(D[1])), int(100*float(D[2])), D[3]]})
return out
def dictClean_Pickle(b):
trans_dict = {}
raw_dict = b[0]
for key, val in raw_dict.items():
trans_dict[key] = modules.dictConvert(val)
with open('/data-local/taejin/feat_dir/Fisher/fisher_trans_dict.pickle', 'wb') as handle:
pickle.dump(trans_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)
def loadPickle(file_path):
print('Loading Pickle File: ', file_path)
st = time.time()
try:
with open(file_path, 'rb') as handle:
b = pickle.load(handle)
print('Loading complete. Elapsed time: %fs' %(time.time()-st))
except:
print('No such file as: ', file_path)
raise ValueError
return b
def savePickle(pickle_path, save_list):
with open(pickle_path, 'wb') as handle:
pickle.dump(save_list, handle, protocol=pickle.HIGHEST_PROTOCOL)
def read_txt(list_path):
with open(list_path) as f:
content = []
for line in f:
line = line.strip()
content.append(line)
f.close()
assert content != [], "File is empty. Abort. Given path: " + list_path
return content
def unison_shuffled_copies(a, b):
assert len(a) == len(b)
p = np.random.permutation(len(a))
return a[p], b[p]
def unison_shuffled_copies_three(amat, bmat, slmat):
assert len(amat) == len(bmat) and len(bmat) == len(slmat)
pmat = np.random.permutation(len(amat))
return amat[pmat], bmat[pmat], slmat[pmat]
def unison_numpy_shuffled(amat, bmat, slmat):
assert len(amat) == len(bmat) and len(bmat) == len(slmat)
amat, bmat, slmat = shuffle(amat, bmat, slmat)
return amat, bmat, slmat
def getGPUbatchSize(num_gpus, batch_size):
nf = int( noremDiv(batch_size,num_gpus))
nl = batch_size - nf*(num_gpus-1)
return np.cumsum([0] + [nf]*(num_gpus-1) + [nl])
def write_txt(w_path, list_to_wr):
with open(w_path, "w") as output:
for k, val in enumerate(list_to_wr):
output.write(val + '\n')
return None
def nanCheck(np_mat):
if np.isnan(np_mat).any():
print('Number of nan: ', np.count_nonzero(np.isnan(np_mat)))
raise ValueError('mean_act_out matrix contains NAN value.')
def segRead(fn, start, end):
fo = open(fn, "r")
line = fo.readlines()[start:end]
fo.close()
return line
def makeDict(content):
feat_dict = {}
for line in content:
line = line.split(' ')
feat_dict[line[0]] = [line[1], line[2], line[3]]
return feat_dict
def readFeat(dkey, feat_dict, kaldi_feat_path):
fn = kaldi_feat_path + '/' + feat_dict[dkey][0]
start = int(feat_dict[dkey][1])
end = int(feat_dict[dkey][2])
segRead(fn, start, end)
def loadFisherFeatList(kaldi_feat_path):
fisher_mfcc_abs_path = kaldi_feat_path + '/' + '*.txt'
kaldi_mfcc_file_index = []
# Read all the kaldi-generated feature files
for file in glob.glob(fisher_mfcc_abs_path):
print('###### ARK file open: ', file)
kaldi_mfcc_file_index.append(file)
return kaldi_mfcc_file_index
def ftm(name):
'''
Fisher speaker tag remover:
(Trans dictionary is indexed per session, not speaker.)
'''
return name.replace('-A', '').replace('-B', '')
def kaldiFeatLoader(kaldi_mfcc_file_index_list, trans_dict):
'''
Using trans_dict, this generator function loads
kaldi feature file per session sequentially.
Args:
kaldi_mfcc_file_index_list: Please include all the .txt path for features
trans_dict: Please include all the dictionary for the training/test data.
Returns:
fileid
mfcc numpy array (length x #ch)
trans_dict: transcription in dictionary format ex( key format: "fe_03_01234"
'''
for list_path in kaldi_mfcc_file_index_list:
print(list_path)
with open(list_path) as f:
mfcc_lines = []
raw_mfcc_id = list_path.split('/')[-1]
for i, line in enumerate(f):
line = line.strip()
if 'fe' in line: # The first line
fileid = line.replace('[', '').strip()
print('Captured fileID: %s' %(fileid))
start_line_num = str(i+1)
elif ']' in list(line): # The last line -> output a set of training samples
line = line.replace(']', '')
print(line)
mfcc_lines.append([float(x) for x in line.strip().split(' ')])
end_line_num = str(i)
index_list = [fileid, raw_mfcc_id, start_line_num, end_line_num]
yield [fileid,
np.asarray(mfcc_lines),
trans_dict[ftm(fileid)]]
mfcc_lines = [] # Empty the buffer list
else:
mfcc_lines.append([float(x) for x in line.strip().split(' ')])
def seqLen(tD):
'''Calculate the number of non-zero elements for variable length RNN
'''
# return np.expand_dims(np.count_nonzero(tD, axis=1), axis=1)
# return list(np.count_nonzero(tD, axis=1))
# SLout = np.count_nonzero(tD, axis=1)
SLout = np.count_nonzero(tD, axis=1)
return SLout
def fisherSpkCH(fileid):
''' Fisher Corpora Channel Mapper '''
spk = fileid.strip()[-1]
if spk == 'A':
return 0
elif spk == 'B':
return 1
def makeTxtBash(file_name):
if not os.path.isfile(file_name):
bashGet('touch ' + file_name)
else:
bashGet('rm ' + file_name)
bashGet('touch ' + file_name)