-
Notifications
You must be signed in to change notification settings - Fork 1
/
crossgen_sensor_firstn_prep2prep.m
executable file
·211 lines (166 loc) · 8.32 KB
/
crossgen_sensor_firstn_prep2prep.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
%% Cross-validation matrix of preparatory attention. Done on sensor space
% written by Tanya Wen
% 2017/01/27
dbstop if error
% addpath(genpath('/imaging/tw05'))
addpath('/imaging/tw05/Preparatory_Attention_Study/Version3-FullExp')
addpath('/imaging/local/software/spm_cbu_svn/releases/spm12_fil_r7219/')
%addpath(genpath('/imaging/local/software/spm_toolbox/eeglab13_4_3b'))
spm('defaults', 'eeg');
% required software: libSVM & RSAtoolbox
workingdir = '/imaging/tw05/Preparatory_Attention_Study/Version3-FullExp';
addpath(genpath(fullfile(workingdir,'software','rsatoolbox')));
addpath(fullfile('/imaging/tw05/Preparatory_Attention_Study/','software','libsvm-mat-2.87-1'));
% control variables
libSVMsettings='-s 1 -t 0'; % nu-SVM, linear
nRandomisations=1000;
nfolds = 5;
% rmpath('/hpc-software/matlab/r2014a/toolbox/bioinfo/biolearning/'); % to make sure libSVM code is used (not strictly necessary: matlab svmtrain yields exactly same model)
% Define SUBJECT INFORMATION
subs = [1,2,3,4,5,6,7,8,9,10,11,13,15,16,17,18,19,20]; % subject numbers
subjects_dirs = {'meg16_0317/161107','meg16_0319/161110','meg16_0321/161111','meg16_0322/161114','meg16_0325/161115','meg16_0327/161117','meg16_0330/161121','meg16_0332/161122','meg16_0333/161124','meg16_0337/161128','meg16_0339/161129','meg16_0340/161129','meg16_0341/161201','meg16_0343/161202','meg16_0345/161206','meg16_0346/161206','meg16_0348/161208','meg16_0349/161208','meg16_0350/161212','meg16_0352/161213'};
subjnum = [1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,6,2]; % counterbalancing numbers
min_trials_mvpa = [88,98,87,98,67,67,91,89,56,82,59,0,66,0,90,84,45,68,97,93];
%% parallelize
nw=64;
scheduler=cbu_scheduler();
scheduler.SubmitArguments='-q compute -l mem=200gb -l walltime=460800';
if isempty(gcp('nocreate')) || ~exist('pool','var') || pool.NumWorkers ~= nw,
if ~isempty(gcp('nocreate'))
delete(gcp('nocreate'))
end
scheduler.NumWorkers=nw;
pool=parpool(scheduler,nw);
end
for sub = [1,2,3,4,5,6,7,8,9,10,11,13,15,16,17,18,19,20]
% go to subject directory
cd(workingdir)
swd = sprintf('sub%02d/%s',sub,subjects_dirs{sub}); % subject working directory
cd(swd)
%% attentional template
% load data
D = spm_eeg_load('caefMspm12_attention_task_block1_raw.mat');
data3D = D.fttimelock.trial;
% mark button press trials
bp_trials = []; % button press trials
devents = D.events;
for trial = 1:numel(D.events)
if ismember(4096,[devents{trial}.value]) == 1
bp_trials = [bp_trials trial];
end
end
D = badtrials(D, bp_trials, 1);
% get good channels
modalities = {'MEGMAG';'MEGPLANAR';'EEG'};
for m = 1:numel(modalities)
chans{m} = indchantype(D,modalities{m},'GOOD');
end
newdata3D = zscore(data3D(:,[chans{:}],:),[],2); % standardize each channel
cond_values = D.fttimelock.trialinfo;
%% define labels
% define subject specific pairings
allperms = perms([1 2 3]);
for i = 1:length(allperms)
if rem(subjnum(sub),6)+1 == i
choosetargets = allperms(i,:);
end
end
% define cue1 & cue2 index vectors
keep = indtrial(D,D.condlist,'GOOD');
cues=cell(1,2);
for i=1:2
cues{i} = intersect(find(cond_values==i),keep);
end
clear D
%% smoothing option
smoothing = {'Raw','Smooth'};
for smooth = 1:numel(smoothing)
%% sliding time window
winsizes = 8;%[8,25,50,125]; %32ms,100ms,200ms,500ms
for winsize = winsizes
% set analysis time windows
twin_train = [1 size(newdata3D,3)]; % time of interest
stpsize = 1; %step size
trainwins = [twin_train(1):stpsize:(twin_train(2)-winsize)]';
trainwins(:,2) = trainwins(:,1) + winsize;
ntrains = size(trainwins,1);
twin_test = [1 size(newdata3D,3)]; % time of interest
testwins = [twin_test(1):stpsize:(twin_test(2)-winsize)]';
testwins(:,2) = testwins(:,1) + winsize;
ntests = size(testwins,1);
% %%%%% djm: this bit allows the variable to be 'sliced' in parfor loop;
% windatatrain=nan(size(data3D,1),size(data3D,2),winsize+1,ntrains);
% % the window seems to be 8+1 samples long
% for islide = 1:ntrains
% windatatrain(:,:,:,islide)=data3D(:,:,trainwins(islide,1):trainwins(islide,2));
% end
% windatatest=windatatrain; % making a separate variable stops it needing to be 'broadcast'
% %%%%
accuracy_matrix = nan(ntrains,ntests);
predicted_vals = cell(ntrains,ntests);
tempind = [cues{:}];
train_cond_values = cond_values(tempind);
c1 = tempind(train_cond_values==1);
c2 = tempind(train_cond_values==2);
subsetind = [round(c1(1:min_trials_mvpa(sub)/2)),round(c2(1:min_trials_mvpa(sub)/2))];
labels_train=cond_values(subsetind)';
testind = setdiff([cues{:}],subsetind);
labels_test=cond_values(testind)';
parfor islide = 1:ntrains
% patternsTrain=double(windatatrain(subsetind,:,:,islide));
% if smooth == 1 % no smoothing
% patternsTrain=reshape(patternsTrain,length(subsetind),[]);
% elseif smooth == 2 % smoothing
% patternsTrain = mean(patternsTrain,3);
% end
itrain = newdata3D(:,:,trainwins(islide,1):trainwins(islide,2));
patternsTrain=double(itrain(subsetind,:,:));
if smooth == 1 % no smoothing
patternsTrain=reshape(patternsTrain,length(subsetind),[]);
elseif smooth == 2 % smoothing
patternsTrain = mean(patternsTrain,3);
end
% classification using linear SVM (train the classifier)
model=svmtrain(labels_train,patternsTrain,libSVMsettings);
for jslide = 1:ntests
% patternsTest = double(windatatest(testind,:,:,jslide));
% if smooth == 1 % no smoothing
% patternsTest=reshape(patternsTest,length(testind),[]);
% elseif smooth == 2 % smoothing
% patternsTest = mean(patternsTest,3);
% end
itest = newdata3D(:,:,testwins(jslide,1):testwins(jslide,2));
patternsTest = double(itest(testind,:,:));
if smooth == 1 % no smoothing
patternsTest=reshape(patternsTest,length(testind),[]);
elseif smooth == 2 % smoothing
patternsTest = mean(patternsTest,3);
end
% classification using linear SVM (test the classifier)
[predicted,accuracy,~]=svmpredict(labels_test,patternsTest,model);
accuracy_matrix(islide,jslide)=accuracy(1);
predicted_vals{islide,jslide} = predicted;
end % next slide
end % next slide
output_dir = 'crossgen_sensor_subsample_prep-prep';
try cd(output_dir)
catch eval(sprintf('!mkdir %s',output_dir)); cd(output_dir);
end
figure(sub)
imagesc(accuracy_matrix);
colorbar;
caxis([1,100]);
% djm:
set(gca,'xticklabel',(cellfun(@str2double,get(gca,'xticklabel'))-1)*stpsize*4-100);
set(gca,'yticklabel',(cellfun(@str2double,get(gca,'yticklabel'))-1)*stpsize*4-100);
xlabel('start of test windows (ms)')
ylabel('start of train windows (ms)')
saveas(gcf,sprintf('CrossGenMatrix_firstn_%03dms%s_sub%s.png',winsize*4,smoothing{smooth},num2str(sub)));
save(sprintf('CrossGenMatrix_firstn_%03dms%s_sub%s.mat',winsize*4,smoothing{smooth},num2str(sub)));
close;
cd(workingdir)
cd(swd)
end % winsize
end % smooth
end
delete(gcp)