-
Notifications
You must be signed in to change notification settings - Fork 1
/
Asympt.v
515 lines (478 loc) · 16.8 KB
/
Asympt.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
(* Asymptotic bound for φ *)
Require Import Utf8 Arith.
Import List List.ListNotations.
Require Import Reals.
Require Import Psatz Misc Primes Primisc Prod Harmonic Log.
Require Export Totient.
Require Import Interval.Tactic.
Require Import Logic.FunctionalExtensionality.
(* Proof sketch:
φ n / n = prod[p | n] (1 - 1 / p)
= exp sum[p | n] ln (1 - 1 / p)
≥ exp sum[p | n] -2 (1/p)
≥ exp sum[i ∈ [Nat.log2 n]] -2 (1/i)
≥ exp -O(log log n)
= 1 / O(log n)
*)
Local Open Scope R_scope.
Local Coercion INR : nat >-> R.
Definition Rprod (l : list R) := fold_left Rmult l 1.
Arguments Rprod l /.
Definition Rsum (l : list R) := fold_left Rplus l 0.
Arguments Rsum l /.
Lemma fold_left_Rmult_from_1 :
∀ a l, fold_left Rmult l a = a * fold_left Rmult l 1.
Proof.
intros. revert a. induction l.
- intros. simpl. ring.
- intros. simpl. rewrite IHl.
rewrite IHl with (1 * a). ring.
Qed.
Lemma fold_left_Rmult_from_a :
∀ a b l, fold_left Rmult l (a * b) = b * fold_left Rmult l a.
Proof.
intros. revert a. induction l.
- intros. simpl. ring.
- intros. simpl.
replace (a0 * b * a) with (a0 * a * b) by lra.
rewrite IHl. ring.
Qed.
Lemma fold_left_Rplus_from_0 :
∀ a l, fold_left Rplus l a = a + fold_left Rplus l 0.
Proof.
intros. revert a. induction l.
- intros. simpl. ring.
- intros. simpl. rewrite IHl.
rewrite IHl with (0 + a). ring.
Qed.
Lemma fold_left_Rplus_from_a :
∀ a b l, fold_left Rplus l (a + b) = b + fold_left Rplus l a.
Proof.
intros. revert a. induction l.
- intros. simpl. ring.
- intros. simpl.
replace (a0 + b + a) with (a0 + a + b) by lra.
rewrite IHl. reflexivity.
Qed.
Lemma fold_left_Rplus_gt_0 :
∀ {T} (l : list T) (g : T → R) (a : R),
(a >= 0) → (l ≠ []) → (∀ x, x ∈ l → g x > 0) →
fold_left Rplus (map g l) a > 0.
Proof.
intros. destruct l.
- contradict H0. reflexivity.
- simpl. clear H0. revert H1. revert l.
induction l.
+ simpl. intros. specialize H1 with t.
assert (g t > 0) by auto. lra.
+ intros. simpl.
rewrite fold_left_Rplus_from_a with (a + g t) _ _.
assert (∀ x : T, x ∈ t :: l → g x > 0).
{
intros. apply H1. simpl. destruct H0; auto.
}
apply IHl in H0.
assert (g a0 > 0).
{
apply H1. simpl. auto.
}
lra.
Qed.
Lemma Rmult_ne_0 :
∀ (a b : R) , a * b ≠ 0 ↔ (a ≠ 0 ∧ b ≠ 0).
Proof.
intros. split; nra.
Qed.
Lemma fold_left_Rmult_ne_0 :
∀ {T} (l : list T) (g : T → R) (a : R),
(a ≠ 0) → (∀ x, x ∈ l → g x ≠ 0) →
fold_left Rmult (map g l) a ≠ 0.
Proof.
induction l.
- intros. simpl. assumption.
-
intros. simpl. rewrite fold_left_Rmult_from_1.
specialize IHl with g 1.
assert (1 ≠ 0) by lra.
apply IHl in H1.
rewrite Rmult_ne_0. rewrite Rmult_ne_0.
split. split. auto.
apply H0. now left. apply H1.
intros.
apply H0. now right.
Qed.
Lemma fold_left_Rmult_ge_0 :
∀ {T} (l : list T) (g : T → R) (a : R),
(a >= 0) → (∀ x, g x >= 0) →
fold_left Rmult (map g l) a >= 0.
Proof.
induction l.
- intros. simpl. assumption.
-
intros. simpl. rewrite fold_left_Rmult_from_1.
specialize IHl with g 1.
assert (1 >= 0) by lra.
apply IHl in H1. apply Rle_ge.
apply Stdlib.Rmult_le_pos_pos.
apply Stdlib.Rmult_le_pos_pos. lra.
specialize H0 with a. lra. lra. assumption.
Qed.
Lemma fold_left_Rmult_gt_0 :
∀ {T} (l : list T) (g : T → R) (a : R),
(a > 0) → (∀ x, x ∈ l → g x > 0) →
fold_left Rmult (map g l) a > 0.
Proof.
induction l.
- intros. simpl. assumption.
-
intros. simpl. rewrite fold_left_Rmult_from_1.
specialize IHl with g 1.
assert (1 > 0) by lra.
apply IHl in H1. apply Rlt_gt.
apply Rmult_lt_0_compat.
apply Rmult_lt_0_compat. lra.
specialize H0 with a.
assert (a ∈ a :: l) by now left. apply H0 in H2.
lra. lra. intros. apply H0. now right.
Qed.
Lemma ln_Rprod_Rsum :
∀ l, (l ≠ []) → (∀ x, x ∈ l → 0 < x) → ln (Rprod l) = Rsum (map ln l).
Proof.
intros. destruct l.
- simpl. apply ln_1.
- simpl. clear H. revert H0. revert l.
induction l.
+ intros. simpl. rewrite Rmult_1_l. rewrite Rplus_0_l. reflexivity.
+ intros. simpl.
rewrite Rmult_1_l, Rplus_0_l in *.
rewrite fold_left_Rplus_from_a.
rewrite fold_left_Rmult_from_a.
rewrite ln_mult. rewrite IHl. reflexivity.
intros. apply H0. destruct H. now left.
right. now right.
apply H0. right. left. reflexivity.
apply Rgt_lt.
replace l with (map id l).
apply fold_left_Rmult_gt_0.
apply Rlt_gt. apply H0. left. reflexivity.
intros. unfold id. apply Rlt_gt. apply H0. right.
right. assumption.
clear. induction l. reflexivity. simpl. rewrite IHl. reflexivity.
Qed.
Lemma Rsum_map_le :
∀ l f g (Hle : ∀ x : nat, x ∈ l → f x <= g x),
Rsum (map f l) <= Rsum (map g l).
Proof.
intros. induction l.
- simpl. lra.
- simpl in *. repeat rewrite Rplus_0_l.
rewrite fold_left_Rplus_from_0.
rewrite fold_left_Rplus_from_0 with (g a) _.
assert (f a <= g a).
{ apply Hle. now left. }
assert (fold_left Rplus (map f l) 0 <= fold_left Rplus (map g l) 0).
{ apply IHl. intros. apply Hle. now right. }
lra.
Qed.
Theorem prod_INR_Rprod :
∀ (l : list nat), INR (prod l) = Rprod (map INR l).
Proof.
intros. simpl.
induction l.
- reflexivity.
- simpl. rewrite plus_0_r. rewrite Rmult_1_l.
rewrite fold_left_mul_from_1.
rewrite fold_left_Rmult_from_1.
rewrite mult_INR. rewrite IHl. reflexivity.
Qed.
Theorem Rprod_div :
∀ {T} (f g : T → R) l (Hgne0 : ∀ x, x ∈ l → g x ≠ 0),
Rprod (map f l) / Rprod (map g l) = Rprod (map (λ (x : T), (f x) / (g x)) l).
Proof.
intros. induction l.
- simpl. field.
- simpl in *.
rewrite fold_left_Rmult_from_1.
rewrite fold_left_Rmult_from_1 with (1 * g a) _.
rewrite fold_left_Rmult_from_1 with (1 * (f a / g a)) _.
rewrite <- IHl. field. split.
apply fold_left_Rmult_ne_0. auto.
intros. apply Hgne0. now right.
apply Hgne0. now left.
intros. apply Hgne0. auto.
Qed.
Lemma ln_1_minus_x_ge_minus_2x :
∀ x : R, 0 <= x <= 1/2 → ln (1 - x) >= - 2 * x.
Proof.
intros.
apply Rminus_ge.
(* i_prec=53 should be the default, but the interval tactic fails without it.
I'm not sure why. -KH *)
interval with (i_autodiff x, i_prec 53).
Qed.
Lemma len_prime_divisors_le_log2 :
∀ n, length (prime_divisors n) ≤ Nat.log2 n.
Proof.
intros.
destruct n. reflexivity.
apply Nat.log2_le_pow2. lia.
remember (S n) as m.
rewrite <- prime_divisor_pow_prod by lia.
rewrite <- prod_const_f with (f := (fun _ => 2%nat)) by (intros; easy).
apply prod_le. intros.
specialize (in_prime_divisors_power_ge_1 _ _ H) as G.
apply prime_divisors_decomp in H.
specialize (in_prime_decomp_ge_2 _ _ H) as T.
split. lia.
assert (a ^ 1 <= a ^ (pow_in_n m a))%nat by (apply Nat.pow_le_mono_r; lia).
simpl in H0. rewrite Nat.mul_1_r in H0. lia.
Qed.
Inductive entrywise_le : list nat → list nat → Prop :=
| entrywise_le_nil : entrywise_le [] []
| entrywise_le_cons x1 l1 x2 l2 (Hlex : x1 ≤ x2) (Hlel : entrywise_le l1 l2): entrywise_le (x1 :: l1) (x2 :: l2).
(*
Print prime_divisors.
*)
Lemma entrywise_le_extend :
forall a1 a2 l1 l2, (a1 <= a2)%nat -> entrywise_le l1 l2 -> entrywise_le (l1 ++ [a1]) (l2 ++ [a2]).
Proof.
intros. induction H0. simpl. constructor. easy. constructor.
do 2 rewrite <- app_comm_cons. constructor; easy.
Qed.
Lemma seq_extend :
forall n x, seq x (S n) = seq x n ++ [(x + n)%nat].
Proof.
induction n; intros. simpl. rewrite Nat.add_0_r. easy.
replace (seq x (S (S n))) with (x :: seq (S x) (S n)) by easy.
rewrite IHn. simpl. replace (x + S n)%nat with (S (x + n))%nat by lia.
easy.
Qed.
Lemma filter_seq_extend :
forall n f, (filter f (seq 1 (S n))) = if (f (S n)) then (filter f (seq 1 n) ++ [S n]) else filter f (seq 1 n).
Proof.
intros. rewrite seq_extend. rewrite filter_app. simpl.
destruct (f (S n)). easy. apply app_nil_r.
Qed.
Lemma filter_length :
forall {A} f (l : list A), (length (filter f l) <= length l)%nat.
Proof.
intros. induction l. simpl. lia.
simpl. destruct (f a). simpl. lia. lia.
Qed.
Lemma filter_seq_le :
forall n f, entrywise_le (seq 1 (length (filter f (seq 1 n)))) (filter f (seq 1 n)).
Proof.
induction n; intros. simpl. constructor.
rewrite filter_seq_extend. destruct (f (S n)).
rewrite app_length. simpl.
replace (length (filter f (seq 1 n)) + 1)%nat with (S (length (filter f (seq 1 n)))) by lia.
rewrite seq_extend. apply entrywise_le_extend.
specialize (filter_length f (seq 1 n)) as G. rewrite seq_length in G. lia.
easy. easy.
Qed.
Lemma seq_entrywise_le_prime_divisors :
∀ n, entrywise_le (seq 1 (length (prime_divisors n))) (prime_divisors n).
Proof.
intros. apply filter_seq_le.
Qed.
Lemma Rprod_increasing_f :
∀ (l1 l2 : list nat) (f : nat → R),
(∀ i j, i ≤ j → f i <= f j) →
(∀ i, f i >= 0) →
(entrywise_le l1 l2) → Rprod (map f l1) <= Rprod (map f l2).
Proof.
intros. induction H1.
- lra.
- simpl in *. repeat rewrite Rmult_1_l.
rewrite fold_left_Rmult_from_1.
rewrite fold_left_Rmult_from_1 with (f x2) _.
specialize (fold_left_Rmult_ge_0 l1 f 1) as Hl1.
specialize (fold_left_Rmult_ge_0 l2 f 1) as Hl2.
assert (1 >= 0) by lra.
apply Hl1 in H2 as Hl11.
apply Hl2 in H2 as Hl22.
specialize H with x1 x2. apply H in Hlex.
specialize H0 with x1 as Hx1.
specialize H0 with x2 as Hx2. nra.
apply H0. apply H0.
Qed.
Lemma Rsum_increasing_f :
∀ (l1 l2 : list nat) (f : nat → R),
(∀ i j, (i ∈ l1 ∨ i ∈ l2) → (j ∈ l1 ∨ j ∈ l2) → i ≤ j → f i <= f j) →
(entrywise_le l1 l2) → Rsum (map f l1) <= Rsum (map f l2).
Proof.
intros. induction H0.
- lra.
- simpl in *. repeat rewrite Rplus_0_l.
rewrite fold_left_Rplus_from_0.
rewrite fold_left_Rplus_from_0 with (f x2) _.
apply H in Hlex; auto.
assert (fold_left Rplus (map f l1) 0 <= fold_left Rplus (map f l2) 0).
{
apply IHentrywise_le. intros.
apply H; auto. destruct H1; auto. destruct H2; auto.
}
lra.
Qed.
Lemma Rsum_distr_f :
∀ l f t, Rsum (map (λ x : nat, t * f x) l) = t * Rsum (map f l).
Proof.
intros. induction l.
- simpl. rewrite Rmult_0_r. reflexivity.
- simpl in *. repeat rewrite Rplus_0_l.
rewrite fold_left_Rplus_from_0.
rewrite fold_left_Rplus_from_0 with (f a) _.
rewrite IHl. rewrite Rmult_plus_distr_l. reflexivity.
Qed.
Lemma map_in_exists :
∀ {A B: Type} (l : list A) (f : A → B) (x : B), x ∈ map f l → (∃ y, (x = f y) ∧ y ∈ l).
Proof.
intros. induction l.
- simpl in H. contradict H.
- simpl in *. destruct H.
+ exists a. split; auto.
+ apply IHl in H as (y & Hy1 & Hy2). exists y.
split; auto.
Qed.
Lemma le_seq :
∀ i a b, i ∈ seq a b → a ≤ i.
Proof.
intros. revert H. revert i a.
induction b.
- simpl. intros. contradict H.
- simpl. intros. destruct H.
+ lia.
+ apply IHb in H. lia.
Qed.
Lemma final_log_bound :
∀ n, 2 ≤ n →
Nat.log2 (Nat.log2 n) + 1 <= - / 2 * ln (exp (-2) / Nat.log2 n ^ 4).
Proof.
intros.
assert (0 < Nat.log2 n)%nat by (apply Nat.log2_pos; lia).
rewrite Rcomplements.ln_div.
rewrite ln_exp.
rewrite Rcomplements.ln_pow.
replace (INR 4) with 4 by (simpl; lra).
replace (- / 2 * (-2 - 4 * ln (Nat.log2 n))) with (1 + 2 * ln (Nat.log2 n)) by field.
specialize (log_bound _ H0) as G. lra.
replace 0 with (INR 0) by easy. apply lt_INR; easy.
apply exp_pos.
replace 0 with (INR 0) by easy. rewrite <- pow_INR. apply lt_INR. simpl.
repeat apply Nat.mul_pos_pos; lia.
Qed.
Theorem φ_lower_bound :
∀ n, 2 ≤ n → φ n / n >= exp(-2) / ((Nat.log2 n) ^ 4).
Proof.
intros.
rewrite <- (prime_divisor_pow_prod n) at 2.
rewrite φ_prime_divisors_power.
repeat rewrite prod_INR_Rprod.
repeat rewrite map_map.
rewrite Rprod_div.
rewrite map_ext_in with _ _ _ (λ x : nat, (x - 1) / x) _.
rewrite <- exp_ln with (Rprod _).
rewrite ln_Rprod_Rsum.
rewrite map_map.
eapply Rge_trans with (exp (Rsum (map (λ x : nat, - 2 / x) (prime_divisors n)))).
apply Rle_ge. apply Raux.exp_le. apply Rsum_map_le.
intros. replace ((x - 1) / x) with (1 - / x).
replace (-2 / x) with (- 2 * (/ x)) by lra.
apply Rge_le. apply ln_1_minus_x_ge_minus_2x.
cut (2 <= x). intros.
(* Again, we need to specify i_prec=53. -KH *)
interval with (i_prec 53).
replace 2 with (INR (2%nat)) by reflexivity.
apply le_INR. apply prime_ge_2. eapply in_prime_decomp_is_prime.
apply prime_divisors_decomp. apply H0. field.
apply prime_divisors_decomp in H0.
apply in_prime_decomp_is_prime in H0. apply prime_ge_2 in H0.
apply le_INR in H0. simpl in H0. lra.
rewrite <- exp_ln. apply Rle_ge. apply Raux.exp_le.
apply Rge_le. eapply Rge_trans. apply Rle_ge. eapply Rsum_increasing_f.
2:{ apply seq_entrywise_le_prime_divisors. }
intros. apply le_INR in H2. apply Rminus_le.
unfold Rdiv, Rminus. rewrite Ropp_mult_distr_r.
rewrite <- Rmult_plus_distr_l. apply Stdlib.Rmult_le_neg_pos; try lra.
replace (/ i + - / j) with (/ i - / j) by reflexivity.
apply Rge_le. apply Rge_minus. apply Rle_ge. apply Raux.Rinv_le; auto.
{
replace 0 with (INR 0%nat) by auto.
apply lt_INR. destruct H0. apply le_seq in H0. lia.
eapply lt_le_trans with 2%nat. lia. apply prime_ge_2.
eapply in_prime_decomp_is_prime. apply prime_divisors_decomp.
apply H0.
}
rewrite map_ext_in with _ _ _ (λ x : nat, (-2) * / x) _ by auto.
rewrite Rsum_distr_f.
replace (ln (exp (-2) / (Nat.log2 n ^ 4))) with (-2 * (-/2 * ln (exp (-2) / (Nat.log2 n ^ 4)))).
apply Rmult_le_ge_compat_neg_l. lra. eapply Rle_trans.
simpl. rewrite map_ext_in with _ _ _ (λ x : nat, 1 / x) _.
apply harmonic_upper_bound.
intros. unfold Rdiv. lra.
eapply Rle_trans. rewrite Rplus_comm.
rewrite <- Rcomplements.Rle_minus_r. eapply Rle_trans.
apply le_INR. apply Nat.log2_le_mono. apply len_prime_divisors_le_log2.
rewrite Rcomplements.Rle_minus_r.
apply Rle_refl.
apply final_log_bound. apply H.
rewrite <- Rmult_assoc. replace (-2 * - / 2) with 1 by lra.
rewrite Rmult_1_l. reflexivity.
(* side conditions *)
- assert (0 < Nat.log2 n).
{ replace 0 with (INR 0%nat) by auto. apply lt_INR.
apply Nat.log2_pos. lia.
(*
eapply Nat.lt_trans. constructor.
eapply Nat.lt_le_trans. auto.
replace 2%nat with (Nat.log2 4) by auto.
apply Nat.log2_le_mono. auto.
*)
}
unfold Rdiv at 1. apply Rmult_lt_0_compat.
apply exp_pos. apply Rinv_0_lt_compat.
replace 0 with (INR 0) in * by easy. apply INR_lt in H0.
rewrite <- pow_INR. apply lt_INR. simpl.
repeat apply Nat.mul_pos_pos; lia.
- unfold not. intros. apply map_eq_nil in H0.
apply prime_divisors_nil_iff in H0. lia.
- intros. apply map_in_exists in H0 as (y & Hy0 & Hy1).
assert (2 <= y).
{ replace 2 with (INR 2%nat) by auto. apply le_INR.
apply prime_ge_2. eapply in_prime_decomp_is_prime.
apply prime_divisors_decomp. apply Hy1.
}
subst. unfold Rdiv. apply Rmult_lt_0_compat. lra.
apply Rinv_0_lt_compat. lra.
- apply Rgt_lt. apply fold_left_Rmult_gt_0.
lra. intros. rewrite prime_divisors_decomp in H0.
apply in_prime_decomp_is_prime in H0. apply prime_ge_2 in H0.
apply le_INR in H0. simpl in *. apply Rdiv_lt_0_compat; lra.
- intros. rewrite mult_INR. repeat rewrite pow_INR.
rewrite minus_INR. simpl.
replace (pow_in_n n a) with (pow_in_n n a - 1 + 1)%nat at 2.
rewrite Rdef_pow_add. rewrite pow_1. field.
assert (INR a ≠ 0).
{
apply prime_divisors_decomp in H0.
apply in_prime_decomp_is_prime in H0. apply prime_ge_2 in H0.
apply le_INR in H0. simpl in H0. lra.
}
split. auto.
apply pow_nonzero. auto.
specialize in_prime_divisors_power_ge_1 with n a as H1.
apply H1 in H0. lia.
apply prime_divisors_decomp in H0.
apply in_prime_decomp_is_prime in H0. apply prime_ge_2 in H0. lia.
- intros. assert (INR x ≠ 0).
{
apply prime_divisors_decomp in H0.
apply in_prime_decomp_is_prime in H0. apply prime_ge_2 in H0.
apply le_INR in H0. simpl in H0. lra.
}
rewrite pow_INR.
now apply pow_nonzero.
- lia.
- lia.
Qed.
Local Close Scope R_scope.