-
Notifications
You must be signed in to change notification settings - Fork 24
/
raytracing_baseline_fgbg.py
210 lines (174 loc) · 7.57 KB
/
raytracing_baseline_fgbg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import json
import copy
import argparse
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader
import struct
from chamferdist import ChamferDistance
from data.common import CollateFn, nuScenesVolume2Kitti
from utils.evaluation import compute_chamfer_distance, compute_chamfer_distance_inner, compute_ray_errors, clamp
def get_grid_mask(points, pc_range):
points = points.T
mask1 = np.logical_and(pc_range[0] <= points[0], points[0] <= pc_range[3])
mask2 = np.logical_and(pc_range[1] <= points[1], points[1] <= pc_range[4])
mask3 = np.logical_and(pc_range[2] <= points[2], points[2] <= pc_range[5])
mask = mask1 & mask2 & mask3
return mask
def get_clamped_gt(n_output, points, tindex, pc_range,
eval_within_grid=False, eval_outside_grid=False, get_indices=False):
pcds = []
if get_indices:
indices = []
for t in range(n_output):
mask = tindex == t
if eval_within_grid:
mask = np.logical_and(mask, get_grid_mask(points, pc_range))
if eval_outside_grid:
mask = np.logical_and(mask, ~get_grid_mask(points, pc_range))
# skip the ones with no data
if not mask.any():
continue
if get_indices:
idx = np.arange(points.shape[0])
indices.append(idx[mask])
gt_pts = points[mask, :3]
pcds.append(torch.from_numpy(gt_pts))
if get_indices:
return pcds, indices
else:
return pcds
def make_data_loader(cfg, args):
dataset_kwargs={
"pc_range": cfg["pc_range"],
"voxel_size": cfg["voxel_size"],
"n_input": cfg["n_input"],
"input_step": cfg["input_step"],
"n_output": cfg["n_output"],
"output_step": cfg["output_step"],
}
data_loader_kwargs={
"pin_memory": False, # NOTE
"shuffle": True,
"batch_size": args.batch_size,
"num_workers": args.num_workers,
}
if cfg["dataset"].lower() == "nuscenes":
from data.nusc import nuScenesDataset
from nuscenes.nuscenes import NuScenes
from data.common import CollateFn
if args.test_split == "test":
cfg["nusc_version"] = "v1.0-test"
nusc = NuScenes(cfg["nusc_version"], cfg["nusc_root"])
Dataset = nuScenesDataset
data_loader = DataLoader(
Dataset(nusc, args.test_split, dataset_kwargs),
collate_fn=CollateFn,
**data_loader_kwargs,
)
else:
raise NotImplementedError(f"Dataset {cfg['dataset']} is not supported.")
return data_loader
def test(args):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#
device_count = torch.cuda.device_count()
print("Device count", device_count)
if args.batch_size % device_count != 0:
raise RuntimeError(
f"Batch size ({args.batch_size}) cannot be divided by device count ({device_count})"
)
#
with open(f"{args.config_path}", "r") as f:
cfg=json.load(f)
# dataset
data_loader=make_data_loader(cfg, args)
# instantiate a model and a renderer
_n_input, _n_output=cfg["n_input"], cfg["n_output"]
_pc_range, _voxel_size=cfg["pc_range"], cfg["voxel_size"]
#
dt=datetime.now()
metrics = {
"count": 0.0,
"chamfer_distance": 0.0,
"chamfer_distance_inner": 0.0,
"l1_error": 0.0,
"absrel_error": 0.0
}
for i, batch in enumerate(data_loader):
filenames=batch[0]
input_points, input_tindex=batch[1:3]
output_origin, output_points, output_tindex=batch[3:6] # removed output_labels as
# the last returned argument
assert cfg["dataset"] == "nuscenes"
output_labels = batch[6]
assert output_points.shape[0] == 1
static_lidar_points = output_labels < 0.5
dynamic_lidar_points = output_labels > 0.5
# iterate through the batch
for j in range(output_points.shape[0]): # iterate through the batch
pred_pcd_agg = input_points[j].cpu()
gt_pcds = get_clamped_gt(
_n_output,
output_points[j].cpu().numpy(),
output_tindex[j].cpu().numpy(),
_pc_range,
args.eval_within_grid,
args.eval_outside_grid
)
# load predictions
for k in range(len(gt_pcds)):
origin = output_origin[j][k].cpu().numpy()
gt_pcd = gt_pcds[k]
seq = filenames[j][1]
pred_pcd = compute_ray_errors(
pred_pcd_agg,
gt_pcd,
torch.from_numpy(origin),
device,
return_interpolated_pcd=True)
if args.fg_bg == "fg":
dynamic = dynamic_lidar_points[j][output_tindex[j] == k]
gt_pcd = gt_pcd[dynamic, :3]
pred_pcd = pred_pcd[dynamic, :3]
else:
static = static_lidar_points[j][output_tindex[j] == k]
gt_pcd = gt_pcd[static, :3]
pred_pcd = pred_pcd[static, :3]
if gt_pcd.shape[0] == 0:
continue
# get the metrics
metrics["count"] += 1
metrics["chamfer_distance"] += compute_chamfer_distance(pred_pcd, gt_pcd, device)
metrics["chamfer_distance_inner"] += compute_chamfer_distance_inner(pred_pcd, gt_pcd, device)
l1_error, absrel_error = compute_ray_errors(pred_pcd, gt_pcd, torch.from_numpy(origin), device)
metrics["l1_error"] += l1_error
metrics["absrel_error"] += absrel_error
print("Batch {"+str(i)+"/"+str(len(data_loader))+"}:", "Chamfer Distance:", metrics["chamfer_distance"] / metrics["count"])
print("Batch {"+str(i)+"/"+str(len(data_loader))+"}:", "Chamfer Distance Inner:", metrics["chamfer_distance_inner"] / metrics["count"])
print("Batch {"+str(i)+"/"+str(len(data_loader))+"}:", "L1 Error:", metrics["l1_error"] / metrics["count"])
print("Batch {"+str(i)+"/"+str(len(data_loader))+"}:", "AbsRel Error:", metrics["absrel_error"] / metrics["count"])
print("Batch {"+str(i)+"/"+str(len(data_loader))+"}:", "Count:", metrics["count"])
print("Final Chamfer Distance:", metrics["chamfer_distance"] / metrics["count"])
print("Final Chamfer Distance Inner:", metrics["chamfer_distance_inner"] / metrics["count"])
print("Final L1 Error:", metrics["l1_error"] / metrics["count"])
print("Final AbsRel Error:", metrics["absrel_error"] / metrics["count"])
if __name__ == "__main__":
parser=argparse.ArgumentParser()
parser.add_argument("--config-path", type=str, required=True)
parser.add_argument("--test-split", type=str, required=True)
parser.add_argument("--batch-size", type=int, default=36)
parser.add_argument("--num-workers", type=int, default=4)
parser.add_argument("--compute-chamfer-distance", action="store_true")
parser.add_argument("--eval-within-grid", action="store_true")
parser.add_argument("--eval-outside-grid", action="store_true")
parser.add_argument("--plot-metrics", action="store_true")
parser.add_argument("--fg-bg", default='fg', required=True, type=str)
parser.add_argument("--write-dense-pointcloud", action="store_true")
args=parser.parse_args()
torch.random.manual_seed(0)
np.random.seed(0)
test(args)