-
Notifications
You must be signed in to change notification settings - Fork 0
/
#Body.tex#
80 lines (71 loc) · 2.48 KB
/
#Body.tex#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
\documentclass[a4,12pt,dvipdfmx]{book}
\usepackage[top=25mm,bottom=35mm,left=25mm,right=25mm]{geometry}
\usepackage{otf}
%\topmargin=-10mm
%\headheight=12pt
%\headsep=0mm
%\textheight=245mm
%\oddsidemargin=-5mm
%\evensidemargin=-5mm
%\textwidth=170mm
\usepackage[style=phys,articletitle=false,%
biblabel=brackets,chaptertitle=false,pageranges=false,%
backend=bibtex]{biblatex}
\DeclarePrefChars{'-}
\addbibresource{../../library.bib}
%\usepackage{todonotes}
%\renewcommand{\baselinestretch}{2}
\usepackage{tikz}
%\usepackage{mediabb}
%\setlength\floatsep{50mm}
\usepackage{subcaption}
\usepackage{amsmath,amsfonts,amsthm,amssymb}
\usepackage{ascmac}
\usepackage{algorithm}
\usepackage{algorithmic}
\usepackage{graphicx}
\usepackage{color}
\usepackage{dcolumn}
\usepackage{bm}
\usepackage{book tabs}
\usepackage{braket}
\usepackage{setspace}
\usepackage{docmute}
\usepackage{listings}
\usepackage[colorlinks]{hyperref}
%\newcommand{\figref}[2][{}]{\hyperref[#2]{\figurename~\ref{#2}#1}}
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[theorem]
\newtheorem{lemma}[theorem]{Lemma}
\newcounter{one}
\setcounter{one}{1}
\pagestyle{plain}
\begin{document}
\title{Effects of Boundary Conditions on Magnetic Friction}
\author{Kentaro Sugimoto \\ Department of Physics, The University of Tokyo }
\date{\today}
\maketitle
\input{Acknowledgement}
\clearpage
\begin{center}
\large{{\bf Abstract}}
\end{center}
We numerically investigate magnetic friction in the non-equilibrium Ising model with the quasi-one-dimensional geometry. The upper half of the system slides against the lower half along the transverse axis with a fixed sliding velocity. We calculate the frictional force density and the bulk energy density. We find peaks in their temperature derivatives, which may diverge in the two-dimensional limit. The result is consistent with Ref.~\cite{Hucht2009b}, which showed a novel boundary critical point above the ordinary bulk critical point in two dimensions.
%Based on these results, we propose a new way of manipulating magnetic frictions by changing fixed boundary conditions. This way gives a new framework for reducing or enhancing frictional heats on solids.
%\listoftodos
\tableofcontents
\input{Introduction}
\input{NEPhaseTrans}
\input{NumSim}
%\input{Setup}
%\input{Setup_}
\input{Results}
\input{Summary}
\appendix
\input{App_StochasticMatrices}
%\input{App_SourceCodes}
%\input{App_ResSimDet}
\printbibliography
\end{document}