-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVAE.py
424 lines (370 loc) · 13.1 KB
/
VAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
# -*- coding: utf-8 -*-
"""VAE PyTorch.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1484hwapatM9DqxsXJA-bWSPn_KJX49HW
"""
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import torch.nn as nn
from scipy.stats import entropy
from torch.utils.data import Dataset, DataLoader
from sklearn.manifold import TSNE
from scipy.stats import wasserstein_distance
from sklearn.preprocessing import MinMaxScaler
import numpy as np
import pandas as pd
import os
from sklearn.decomposition import PCA
import random
import sys
import glob
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
original = sys.stdout
"""# Dataset"""
class CustomDataset(Dataset):
def __init__(self, actual, shuffle=True, scale=False):
if isinstance(actual, str):
df = pd.read_csv(actual)
self.df = df
elif isinstance(actual, np.ndarray):
self.df = pd.DataFrame(actual)
else:
self.df = actual
self.len = self.df.shape[0]
self.df = self.df.values
def __len__(self):
return self.len
def __getitem__(self, idx):
return self.df[idx, :]
# Does mean and variance need to be shared in the same layer ?
""" Model"""
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
""" Encoder"""
class Encoder(nn.Module):
def __init__(self, input_dim, latent_dim):
super(Encoder, self).__init__()
self.mean = nn.Sequential(
nn.Linear(input_dim, latent_dim),
nn.BatchNorm1d(latent_dim),
nn.ReLU(inplace=True),
nn.Linear(latent_dim, latent_dim),
nn.BatchNorm1d(latent_dim),
nn.ReLU(inplace=True),
nn.Linear(latent_dim, latent_dim),
nn.BatchNorm1d(latent_dim),
nn.ReLU(inplace=True),
)
self.var = nn.Sequential(
nn.Linear(input_dim, latent_dim),
nn.BatchNorm1d(latent_dim),
nn.ReLU(inplace=True),
nn.Linear(latent_dim, latent_dim),
nn.BatchNorm1d(latent_dim),
nn.ReLU(inplace=True),
nn.Linear(latent_dim, latent_dim),
nn.BatchNorm1d(latent_dim),
nn.ReLU(inplace=True),
)
def forward(self, x):
mean = self.mean(x)
std = self.var(x)
return mean, std
"""## Decoder"""
class Decoder(nn.Module):
def __init__(self, input_dim, latent_dim):
super(Decoder, self).__init__()
self.layer = nn.Sequential(
nn.Linear(latent_dim, latent_dim),
nn.ReLU(inplace=True),
nn.Linear(latent_dim, latent_dim),
nn.ReLU(inplace=True),
nn.Linear(latent_dim, input_dim),
nn.Sigmoid(),
)
def forward(self, x):
return self.layer(x)
"""## Connect Encoder and Decoder"""
class VAE(nn.Module):
def __init__(self, input_dim, latent_dim):
super(VAE, self).__init__()
global device
self.enc = Encoder(input_dim, latent_dim).to(device)
self.dec = Decoder(input_dim, latent_dim).to(device)
def forward(self, x):
z_mean, z_var = self.enc(x)
std = torch.exp(z_var / 2)
eps = torch.randn_like(std)
sample = eps.mul(std).add(z_mean)
gen = self.dec(sample)
return gen, z_mean, z_var
"""# Training Loop"""
def prep(data):
if "Unnamed: 0" in data.columns.values:
data.drop(["Unnamed: 0"], axis=1, inplace=True)
if "Unnamed: 0.1" in data.columns.values:
data.drop(["Unnamed: 0.1"], axis=1, inplace=True)
if "Unnamed: 0.1.1" in data.columns.values:
data.drop(["Unnamed: 0.1.1"], axis=1, inplace=True)
return data
def js_divergence(p, q):
m = 0.5 * (p + q)
return 0.5 * (entropy(p, m) + entropy(q, m))
def wstd(org, gen):
org = prep(org)
gen = prep(gen)
wsd = 0
orig_data = org.values
gen_data = gen.values
# if orig_data.shape[1] != gen_data.shape[1]:
# pca = PCA(n_components=gen_data.shape[1])
# pca = pca.fit(orig_data)
# gen_data = pca.inverse_transform(gen_data)
columns = orig_data.shape[1]
w = 0
print(orig_data.shape, gen_data.shape, " Test WSTD Function")
for i in range(columns):
orig_data_ = orig_data[:, i].reshape(-1, 1)
gen_data_ = gen_data[:, i].reshape(-1, 1)
orig_data_ = orig_data_.reshape(
len(orig_data),
)
gen_data_ = gen_data_.reshape(
len(gen_data),
)
# orig_data_ += 1
# gen_data_ += 1
w += wasserstein_distance(orig_data_, gen_data_)
# break
w /= columns
wsd += w
return wsd
def calculate_jsd(org, gen):
org = prep(org)
gen = prep(gen)
KLD = 0
orig_data = org.values
gen_data = gen.values
# if orig_data.shape[1] != gen_data.shape[1]:
# pca = PCA(n_components=gen_data.shape[1])
# pca = pca.fit(orig_data)
# gen_data = pca.inverse_transform(gen_data)
columns = orig_data.shape[1]
scaler = MinMaxScaler()
softmax = torch.nn.Softmax(0)
kld = 0
print(orig_data.shape, gen_data.shape, " Test JSD Function")
for i in range(columns):
orig_data_ = scaler.fit_transform(orig_data[:, i].reshape(-1, 1))
gen_data_ = scaler.fit_transform(gen_data[:, i].reshape(-1, 1))
orig_data_ = orig_data_.reshape(
len(orig_data),
)
gen_data_ = gen_data_.reshape(
len(gen_data),
)
orig_data_ = softmax(torch.from_numpy(orig_data_)).numpy()
gen_data_ = softmax(torch.from_numpy(gen_data_)).numpy()
# orig_data_ += 1
# gen_data_ += 1
kld += js_divergence(orig_data_, gen_data_)
# break
kld /= columns
KLD += kld
return KLD
def train(original_dim, latent_dim, learning_rate, epochs, dataloader, rawdataset):
global device
vae = VAE(original_dim, latent_dim).to(device)
optimizer = torch.optim.Adam(vae.parameters(), lr=learning_rate)
losslist = []
allowed_epochs = [1, 10, 100, 500, epochs]
for epoch in range(epochs):
running_loss = 0
for _, data in enumerate(dataloader):
data = data.float().to(device)
optimizer.zero_grad()
sample, z_mean, z_var = vae(data)
reconstruction_loss = nn.functional.binary_cross_entropy(sample, data)
kl_loss = 0.0001 * (torch.sum(torch.exp(z_var) + z_mean ** 2 - 1.0 - z_var))
loss = reconstruction_loss + kl_loss
loss.backward()
running_loss += loss.item()
optimizer.step()
losslist.append(running_loss / len(rawdataset))
if epoch % 500 == 499:
print(
f"[{epoch+1}/{epochs}] Done. Average loss = {sum(losslist)/len(losslist)}"
)
return vae, losslist
def generate(decoder, numsamples, latent_dim, doMinMax, doPca, pca, scaler, cols):
global device
noise = np.random.randn(numsamples, latent_dim)
noise = torch.from_numpy(noise).float().to(device)
decoder.eval()
with torch.no_grad():
gen = decoder(noise).cpu().numpy()
if doPca:
gen = pca.inverse_transform(gen)
if doMinMax:
gen = scaler.inverse_transform(gen)
gen = pd.DataFrame(gen, columns=cols)
return gen
def plot(plotpath, losslist, n):
x = list(range(1, len(losslist) + 1))
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Loss vs Epoch")
plt.plot(x, losslist)
plt.savefig(os.path.join(plotpath, "LossVsEpoch_" + str(n) + ".png"))
plt.close()
def save(encoder, decoder, losslist, modelpath, n):
encoder.cpu()
decoder.cpu()
torch.save(
{
"Enc": encoder,
"Dec": decoder,
"state_dict": {"enc": encoder.state_dict(), "dec": decoder.state_dict()},
},
os.path.join(modelpath, "models.pth"),
)
f = open("kl_losslist_" + str(n) + ".txt", "w+")
for i, val in enumerate(losslist):
f.write(f"Epoch: {i+1}, Loss: {losslist}\n")
f.close()
f = open("Info_" + str(n) + ".txt", "w+")
f.write("Models saved in form of dictionary of the following structure\n")
f.write(
"""
'Enc'+:encoder,
'Dec':decoder,
'state_dict':{
'enc':encoder state dict,
'dec':decoder state dict
}
\n"""
)
f.close()
def main(root, gen_counter, doPca, doMinMax):
# origpath = os.path.join(root, "origdata", "data.csv")
origpath = root
print(origpath)
genpath = os.path.join("../OutputFiles/VAE/", "gen_final_org" + str(gen_counter))
modelpath = os.path.join("../OutputFiles/VAE/", "model_final_org" + str(gen_counter))
plotpath = os.path.join("../OutputFiles/VAE/", "plot_final_org" + str(gen_counter))
os.makedirs(genpath, exist_ok=True)
os.makedirs(modelpath, exist_ok=True)
os.makedirs(plotpath, exist_ok=True)
print(genpath)
print(modelpath)
print(plotpath)
# Hyperparameters
latent_dim = 100
batch_size = 10
epochs = 4000
learning_rate = 0.0005
print(f"[INFO] Loading Dataset {origpath}...")
print("[INFO] Load Data")
sample_sizes = [83]
for sample_size in sample_sizes:
data = pd.read_csv(origpath)
if "Unnamed: 0" in data.columns.values:
data.drop(["Unnamed: 0"], axis=1, inplace=True)
if "Unnamed: 0.1" in data.columns.values:
data.drop(["Unnamed: 0.1"], axis=1, inplace=True)
print(data.head(1))
try:
data.drop(["host_name", "tuberculosis", "hiv"], axis=1, inplace=True)
except:
pass
columns = data.columns
orig_data = data
data = data.sample(sample_size)
print(len(columns), "Num Columns")
scaler = MinMaxScaler()
pca = PCA(0.99)
if doMinMax:
print("In MinMax")
data = pd.DataFrame(scaler.fit_transform(data), columns=columns)
if doPca:
data = pd.DataFrame(pca.fit_transform(data))
print(data.columns, "FEATURE Space")
rawdataset = CustomDataset(data)
dataloader = DataLoader(rawdataset, batch_size=batch_size, shuffle=True)
# rawdataset = CustomDataset(origpath, scale=True)
# #print(type(rawdataset), " <- Raw Dataset")
# dataloader = DataLoader(rawdataset, batch_size=batch_size, shuffle=True)
original_dim = data.shape[1]
# print(type(dataloader))
print("[INFO] Training Begin")
vae, losslist = train(
original_dim,
latent_dim,
learning_rate,
epochs,
dataloader,
rawdataset,
)
encoder = vae.enc
decoder = vae.dec
print("[INFO] Generate Samples")
gen_sample = generate(
decoder, len(orig_data), latent_dim, doMinMax, doPca, pca, scaler, columns
)
gen_sample.to_csv(os.path.join(genpath, f"VAE_{sample_size}.csv"), index=False)
jsd = calculate_jsd(orig_data, gen_sample)
wass_dist = wstd(orig_data, gen_sample)
sys.stdout = open(
f"{genpath}/model_sample_Axes_{sample_size}_.txt",
"w+",
)
print("Dataset Sizes", orig_data.shape, gen_sample.shape)
print(
"JSD WSD",
jsd,
wass_dist,
)
sys.stdout = original
# if size == sample_size[-1]:
# gen_sample.to_csv(os.path.join(genpath, "orggendata_" + str(size) + ".csv"))
# gen_sample = generate(decoder, 250, latent_dim, doMinMax, scaler, columns)
# gen_sample.to_csv(os.path.join(genpath, "250gendata.csv"))
# gen_sample = generate(decoder, 550, latent_dim, doMinMax, scaler, columns)
# gen_sample.to_csv(os.path.join(genpath, "550gendata.csv"))
# save(encoder, decoder, modelpath, size)
encoder.cpu()
decoder.cpu()
vae.cpu()
del encoder
del decoder
del vae
del rawdataset
del dataloader
del losslist
if __name__ == "__main__":
import time
roots = sorted(glob.glob("../InputFiles/Group*Data.csv"))
gen_counter = 0
roots = roots[:2]
print(roots)
for root in roots:
gen_counter += 1
print(f"{'-'*5} {root} {'-'*5}")
start = time.time()
main(root, gen_counter, False, False)
print(f"Time required = {time.time()-start}")
print(f"-" * 20)
roots = sorted(glob.glob("../InputFiles/Group*Axes.csv"))
gen_counter = 0
roots = roots[:2]
print(roots)
for root in roots:
gen_counter += 1
print(f"{'-'*5} {root} {'-'*5}")
start = time.time()
main(root, gen_counter, False, False)
print(f"Time required = {time.time()-start}")
print(f"-" * 20)