Skip to content

Code for the paper "Training Binary Neural Networks with Bayesian Learning Rule

Notifications You must be signed in to change notification settings

team-approx-bayes/BayesBiNN

Repository files navigation

Code for paper "Training Binary Neural Networks using the Bayesian Learning Rule". https://arxiv.org/abs/2002.10778

  1. Synthetic data

synthetic_data.ipynb

  1. Image classification

BayesBiNN method:

MNIST: python main_mnist.py --model MLPBinaryConnect --optim BayesBiNN

Cifar10: python main_cifar10.py --model MLPBinaryConnect --optim BayesBiNN

Cifar100: python main_cifar100.py --model MLPBinaryConnect --optim BayesBiNN

STE-Adam method:

MNIST: python main_mnist.py --model MLPBinaryConnect_STE --optim STE

Cifar10: python main_cifar10.py --model MLPBinaryConnect_STE --optim STE

Cifar100: python main_cifar100.py --model MLPBinaryConnect_STE --optim STE

Full-Precision Adam:

MNIST: python main_mnist.py --model MLPBinaryConnect --optim Adam

Cifar10: python main_cifar10.py --model MLPBinaryConnect --optim Adam

Cifar100: python main_cifar100.py --model MLPBinaryConnect --optim Adam

  1. Continual Learning

python main_permute_mnist_CL.py

About

Code for the paper "Training Binary Neural Networks with Bayesian Learning Rule

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published