-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
248 lines (202 loc) · 11.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import torch
import numpy as np
import copy
from data_generators import UCIDataGenerator, USPSDataGenerator
import utils
import train
from models import LinearModel, MLP
from lbfgsreg import LBFGSReg
from adamreg import AdamReg
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, default='',
help='Path to where to store plots; use \'None\' if want default matplotlib view')
parser.add_argument('--seed_init', type=int, default=43, help='what random seed to use')
parser.add_argument('--num_runs', type=int, default=3, help='how many runs to do (each with a different random seed)')
parser.add_argument('--dataset', type=str, default='usps_binary', help='what dataset to use: {adult, usps_binary}')
parser.add_argument('--network_type', type=str, default='MLP', help='what network type: {Linear, MLP}')
parser.add_argument('--adaptation_task', type=str, default='add_data',
help='which adaptation task: {add_data, remove_data, change_regulariser, change_model}')
args = parser.parse_args()
# Only consider use_cuda if MLP
use_cuda = False
if args.network_type == "MLP":
use_cuda = True if torch.cuda.is_available() else False
# Which methods to run
adaptation_methods = ['Replay','K-priors']
# For storing and plotting test accuracies
test_accuracies_to_plot = {}
test_accuracies_to_plot['Replay'] = []
test_accuracies_to_plot['K-priors'] = []
# Settings for UCI Adult experiments
if args.dataset == "adult":
polynomial_degree = 1
remove_data_bool = False
prior_prec = 5
args.network_type = "Linear" # Always Linear model with adult dataset
learning_rate = 0.005
num_epochs = 1000
# What proportion of points to store; run many times
fraction_points_stored_list = [1., 0.5, 0.2, 0.1, 0.07, 0.05, 0.02]
# Settings for different adaptation tasks
if args.adaptation_task == "remove_data":
num_points_to_remove = 100 # These are chosen as the points with highest h'(f)
elif args.adaptation_task == "change_regulariser":
prior_prec_old = 50 # Reduce from 50 to 5 in adaptation task
prior_prec = prior_prec_old
prior_prec_new = 5
# Settings for UCI Adult experiments
if args.dataset == "usps_binary":
remove_data_bool = False
prior_prec = 50
if args.network_type == "Linear":
polynomial_degree = 1
learning_rate = 0.1
num_epochs = 300
elif args.network_type == "MLP":
polynomial_degree = None
hidden_sizes = [100] # MLP architecture
learning_rate = 0.005
num_epochs = 1000
# What proportion of points to store; run many times
fraction_points_stored_list = [1., 0.5, 0.2, 0.1, 0.07, 0.05, 0.02]
# Settings for different adaptation tasks
if args.adaptation_task == "change_regulariser":
if args.network_type == "Linear":
prior_prec_old = 50 # Reduce from 50 to 5 in adaptation task
prior_prec = prior_prec_old
prior_prec_new = 5
elif args.network_type == "MLP":
prior_prec_old = 5 # Reduce from 50 to 5 in adaptation task
prior_prec = prior_prec_old
prior_prec_new = 10
if args.adaptation_task == "change_model" and args.network_type == "MLP":
hidden_sizes = [100, 100] # Go from two-hidden-layers to one-hidden-layer
# Repeat over many random seeds
for random_run in range(args.num_runs):
seed = args.seed_init + random_run
np.random.seed(seed)
torch.manual_seed(seed)
print('')
# Data generator
if args.dataset == "adult":
data_generator = UCIDataGenerator(adaptation_task=args.adaptation_task, seed=seed)
elif args.dataset == "usps_binary":
data_generator = USPSDataGenerator(adaptation_task=args.adaptation_task, polynomial_degree=polynomial_degree,
seed=seed)
# Load base task data
base_train_data, base_test_data = data_generator.base_task_data()
# Model and optimiser
if args.network_type == "Linear":
base_model = LinearModel(D_in=data_generator.dimensions, D_out=2)
base_optimiser = LBFGSReg(base_model, lr=learning_rate, weight_decay=prior_prec)
elif args.network_type == "MLP":
base_model = MLP(D_in=data_generator.dimensions, hidden_sizes=hidden_sizes, D_out=2)
base_model = base_model.cuda() if use_cuda else base_model
base_optimiser = AdamReg(base_model, lr=learning_rate, weight_decay=prior_prec)
else:
raise ValueError("Incorrect network type: %s" % args.network_type)
# Train on base task
print('Training on base task...')
train.train_model(base_model, base_optimiser, base_train_data, num_epochs=num_epochs, use_cuda=use_cuda)
test_accuracy = train.test_model(base_model, base_test_data, use_cuda=use_cuda)
print('Test accuracy on base task data: %f' % (test_accuracy))
# Loop over fraction_points_stored_list for K-priors and Replay
for num_points_counter in range(len(fraction_points_stored_list)):
# Number of points to store for K-priors and Replay
num_points_to_store = (int)(fraction_points_stored_list[num_points_counter]*data_generator.number_base_points)
additional_memory_data = None
# If remove_data task, then store the removed points too, for both K-priors and Replay
if args.adaptation_task == "remove_data":
if args.dataset == "adult":
# Points to remove are picked by h'(f), so can simply add this number to num_points_to_store
num_points_to_store += num_points_to_remove
elif args.dataset == "usps_binary":
# All of digit '8' is removed, so need to pick points that are not '8', and then add examples of '8' later
base_train_data, _ = data_generator.data_split(digit_set=[0,1,2,3,4,5,6,7,9])
additional_memory_data, _ = data_generator.data_split(digit_set=[8])
# Select points
memory_points = utils.select_memory_points(base_train_data, base_model, num_points_to_store,
additional_memory_data=additional_memory_data, use_cuda=use_cuda)
# Load data for adaptation task
adapt_train_data, adapt_test_data = data_generator.adaptation_task_data()
# Train on adaptation task while regularising using K-priors or Replay
for adaptation_method in adaptation_methods:
# New model and optimiser
if args.network_type == "Linear":
model = copy.deepcopy(base_model)
optimiser = LBFGSReg(model, lr=learning_rate, weight_decay=prior_prec)
optimiser.previous_weights = base_model.return_parameters()
elif args.network_type == "MLP":
model = copy.deepcopy(base_model)
model = model.cuda() if use_cuda else model
optimiser = AdamReg(model, lr=learning_rate, weight_decay=prior_prec)
optimiser.previous_weights = base_model.return_parameters()
# Soft labels in K-priors, hard (true) labels in Replay
if adaptation_method == "K-priors":
memory_points['labels'] = memory_points['soft_labels']
elif adaptation_method == "Replay":
memory_points['labels'] = torch.nn.functional.one_hot(memory_points['true_labels'])
# If change_model task, then need new model
if args.adaptation_task == "change_model":
if args.network_type == "Linear":
model = LinearModel(D_in=data_generator.dimensions, D_out=2)
optimiser = LBFGSReg(model, lr=learning_rate, weight_decay=prior_prec)
# Correct the memorable inputs to be of correct dimension as polynomial_degree has changed
if args.dataset == "adult":
adapt_train_inputs = torch.from_numpy(data_generator.X_train)
memory_points['inputs'] = adapt_train_inputs[memory_points['indices']]
elif args.dataset == "usps_binary":
adapt_train_data_interm,_ = data_generator.data_split(digit_set=[0,1,2,3,4,5,6,7,8,9])
memory_points['inputs'] = adapt_train_data_interm[0][memory_points['indices']]
optimiser.prior_prec_old = prior_prec
# Set correct previous_weights as polynomial_degree has changed
if args.dataset == "usps_binary":
num_parameters_poly1 = 257 # Poly degree 1 for USPS
num_parameters_poly2 = 33153 # Poly degree 2 for USPS
elif args.dataset == "adult":
num_parameters_poly1 = 124 # Poly degree 1 for Adult
num_parameters_poly2 = 7750 # Poly degree 2 for Adult
optimiser.previous_weights = torch.zeros(2 * num_parameters_poly1)
optimiser.previous_weights[:num_parameters_poly1] = base_model.upper.weight.data[0, :num_parameters_poly1]
optimiser.previous_weights[num_parameters_poly1:num_parameters_poly1 + num_parameters_poly1] = \
base_model.upper.weight.data[1, :num_parameters_poly1]
if use_cuda:
optimiser.previous_weights = optimiser.previous_weights.cuda()
elif args.network_type == "MLP":
new_hidden_sizes = [100]
model = MLP(D_in=data_generator.dimensions, hidden_sizes=new_hidden_sizes, D_out=2)
model = model.cuda() if use_cuda else model
optimiser = AdamReg(model, lr=learning_rate, weight_decay=prior_prec)
optimiser.prior_prec_old = None
else:
raise ValueError("Incorrect network type: %s" % args.network_type)
# If change_regulariser task, then new prior_prec
elif args.adaptation_task == "change_regulariser":
optimiser.prior_prec_old = prior_prec_old
prior_prec = prior_prec_new
if args.adaptation_task == "remove_data":
optimiser.prior_prec_old = prior_prec
remove_data_bool = True
# If Adult dataset, need to find points to remove (the points with highest h'(f))
if args.dataset == "adult":
remove_points = utils.select_memory_points(base_train_data, base_model, num_points_to_remove, use_cuda=use_cuda)
adapt_train_data = (remove_points['inputs'], remove_points['true_labels'])
if args.adaptation_task == "add_data":
optimiser.prior_prec_old = prior_prec
# Store past memory labels
optimiser.memory_labels = memory_points['labels']
# Train model
print('Training on adaptation task using '+adaptation_method+' and fraction of past data of '+
str(fraction_points_stored_list[num_points_counter]))
train.train_model(model, optimiser, adapt_train_data, num_epochs=num_epochs, memory_data=memory_points,
adaptation_method=adaptation_method, remove_data_bool=remove_data_bool, use_cuda=use_cuda)
# Test model
test_accuracy = train.test_model(model, adapt_test_data, use_cuda=use_cuda)
test_accuracies_to_plot[adaptation_method].append(test_accuracy)
print('Test accuracy on adaptation task data: %f' % (test_accuracy))
# Plot test accuracy figures
if len(adaptation_methods) > 1 or len(fraction_points_stored_list) > 1:
plot_title = args.dataset+"_"+args.adaptation_task
utils.plot_increasing_past_size(test_accuracies_to_plot, fraction_points_stored_list,
plot_title=plot_title, path=args.path)