-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
422 lines (329 loc) · 16.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import time
import argparse
import numpy as np
import os
import torch
from collections import defaultdict
from torch.utils.data import DataLoader
from pytorch_transformers import *
import torch.nn as nn
import torch.nn.functional as F
from sklearn.cluster import AffinityPropagation
from sklearn.cluster import SpectralCoclustering
from tqdm import tqdm
from random import sample
from utils import *
from model import *
from transfer import *
from co_cluster import *
from train import *
from batch_generation import *
from pytorch_transformers import *
from pytorch_transformers.modeling_bert import *
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
BATCH_SIZE=16
TEST_BATCH_SIZE=512
EPOCHS = 5
max_seq_length = 128
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='main',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', default='dblp')
parser.add_argument('--topic_file', default='topics_field.txt')
parser.add_argument('--out_file', default='keyword_taxonomy.txt')
args = parser.parse_args()
print(args)
dataset = args.dataset
topic_file = args.topic_file
# ent_sent_index.txt: record the sentence id where each entity occurs; used for generating BERT training sample
print('------------------loading corpus!------------------')
ent_sent_index = dict()
with open(dataset+'/ent_sent_index.txt') as f:
for line in f:
ent = line.split('\t')[0]
tmp = line.strip().split('\t')[1].split(' ')
tmp = [int(x) for x in tmp]
ent_sent_index[ent] = set(tmp)
# sentences_.txt: sentence id to text
sentences = dict()
with open(dataset+'/sentences_.txt') as f:
for i,line in enumerate(f):
sentences[i] = line
ent_ent_index = dict()
with open(dataset+'/ent_ent_index.txt') as f:
for line in f:
ent = line.split('\t')[0]
tmp = line.strip().split('\t')[1].split(' ')
ent_ent_index[ent] = set(tmp)
print('------------------loading embedding!------------------')
pretrain = 0
use_cap0 = False
file = topic_file.split('_')[1].split('.')[0]
# load word embedding
word_emb, vocabulary, vocabulary_inv, emb_mat = get_emb(vec_file=os.path.join(dataset, 'emb_part_'+file + '_w.txt'))
# load topic embedding
topic_emb, topic2id, id2topic, topic_hier = get_temb(vec_file=os.path.join(dataset, 'emb_part_'+file+'_t.txt'), topic_file=os.path.join(dataset, topic_file))
# load word specificity
word_cap = get_cap(vec_file=os.path.join(dataset, 'emb_part_'+file+'_cap.txt'))
ename2embed_bert = loadEnameEmbedding(os.path.join(dataset, 'BERTembed.txt'), 768)
print('------------------generating subtopic candidates!------------------')
# calculate topic representative words: rep_words
rep_words = {}
for topic in topic_emb:
print(topic)
sim_ranking = topic_sim(topic, vocabulary_inv, topic_emb, word_emb)
if pretrain:
cap_ranking = np.ones((len(vocabulary)))
word_cap1 = np.ones((len(vocabulary)))
else:
cap_ranking = rank_cap(word_cap, vocabulary_inv, topic)
if use_cap0:
rep_words[topic] = aggregate_ranking(sim_ranking, cap_ranking, word_cap, topic, vocabulary_inv, pretrain, ent_sent_index, word_cap[topic])
else:
rep_words[topic] = aggregate_ranking(sim_ranking, cap_ranking, word_cap, topic, vocabulary_inv, pretrain, ent_sent_index)
rep_words1 = {}
for topic in topic_emb:
rep_words1[topic] = [x for x in rep_words[topic]]
for word in rep_words:
rep_words[word] = [word]
print('------------------initializing relation classifier!------------------')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = RelationClassifer.from_pretrained('bert-base-uncased')
model.float()
model.to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.5)
print('------------------generating training data!------------------')
# generating training and testing data
total_data, sentences_index = process_training_data(sentences, rep_words, topic_hier, max_seq_length, ent_sent_index, tokenizer)
train_data = total_data[:int(len(total_data)/2*0.95)]
train_data.extend(total_data[int(len(total_data)/2):int(len(total_data)/2+len(total_data)/2*0.95)])
valid_data = total_data[int(len(total_data)/2*0.95):int(len(total_data)/2)]
valid_data.extend(total_data[int(len(total_data)/2*0.95+len(total_data)/2):])
# test_data = process_test_data(rep_words[test_topic], test_cand, max_seq_length)
print(f"training data point number: {len(train_data)}")
# training the bert classifier
print('------------------training relation classifier!------------------')
for epoch in range(EPOCHS):
start_time = time.time()
train_loss, train_acc = train_func(train_data, model, BATCH_SIZE, optimizer, scheduler, generate_batch)
print(f'\tLoss: {train_loss:.4f}(train)\t|\tAcc: {train_acc * 100:.1f}%(train)')
valid_loss, valid_acc = valid_func(valid_data, model, BATCH_SIZE, generate_batch)
print(f'\tLoss: {valid_loss:.4f}(valid)\t|\tAcc: {valid_acc * 100:.1f}%(valid)')
secs = int(time.time() - start_time)
mins = secs / 60
secs = secs % 60
print('Epoch: %d' %(epoch + 1), " | time in %d minutes, %d seconds" %(mins, secs))
print('------------------extracting subtopic candidates!------------------')
entity_ratio_alltopics = {}
entity_count_alltopics = {}
training_topic = {}
for topic in topic_hier['ROOT']:
if topic in topic_hier:
training_topic[topic] = word_cap[topic]
training_topic = sorted(training_topic.items(), key = lambda x: x[1])
train_topic = training_topic[0][0]
for test_topic in topic_hier['ROOT']:
sim_ranking = topic_sim(test_topic, vocabulary_inv, topic_emb, word_emb)
cap_ranking, target_cap = rank_cap_customed(word_cap, vocabulary_inv, [vocabulary[word] for word in topic_hier[train_topic]])
coefficient = max(word_cap[test_topic] / word_cap[train_topic],1)
test_cand = aggregate_ranking(sim_ranking, cap_ranking, word_cap, test_topic, vocabulary_inv, pretrain, ent_sent_index, target_cap*coefficient)
test_data = process_test_data(sentences, rep_words[test_topic], test_cand, max_seq_length,ent_sent_index,ename2embed_bert, tokenizer)
print(f"test data point number: {len(test_data)}")
if len(test_data) > 10000:
test_data = sample(test_data, 10000)
entity_ratio, entity_count = relation_inference(test_data, model, TEST_BATCH_SIZE)
entity_ratio_alltopics[test_topic] = entity_ratio
entity_count_alltopics[test_topic] = entity_count
child_entities_count = sum_all_rel(topic_hier['ROOT'], entity_count_alltopics, mode='child')
# print(child_entities_count)
child_entities = type_consistent(child_entities_count, ename2embed_bert)
print('------------------Topic-Type Matrix Creation!------------------')
clusters_all = {}
k=0
start_list = [0]
for j,topic in enumerate(topic_hier['ROOT']):
X = []
for ent in child_entities[topic]:
if ent not in word_emb:
continue
X.append(word_emb[ent])
X = np.array(X)
clustering = AffinityPropagation().fit(X)
n_clusters = max(clustering.labels_) + 1
clusters = {}
for i in range(n_clusters):
clusters[str(i)] = [child_entities[topic][x] for x in range(len(clustering.labels_)) if clustering.labels_[x] == i]
clusters_all[str(k)] = clusters[str(i)]
k+=1
start_list.append(k)
new_clusters = type_consistent_cocluster(clusters_all, ename2embed_bert, n_cluster_min = 8, print_cls = True)
tmp = defaultdict(list)
print('------------------Subtopics found!------------------')
topic_idx = 0
for k in range(len(clusters_all)):
if k >= start_list[topic_idx]:
print('\n',topic_hier['ROOT'][topic_idx])
topic_idx += 1
if str(k) in new_clusters and len(new_clusters[str(k)]) > 1:
print(new_clusters[str(k)])
tmp[topic_hier['ROOT'][topic_idx-1]].append(new_clusters[str(k)])
child_entities = tmp
print('------------------Root Node Candidate Generation!------------------')
parent_cand = get_common_ent_for_list(topic_hier['ROOT'],ent_ent_index)
if len(parent_cand) > 1000:
parent_cand = type_consistent_for_list(parent_cand, rep_words, ename2embed_bert, False)
parent_entity_ratio_alltopics = {}
parent_entity_count_alltopics = {}
for test_topic in topic_hier['ROOT']:
print(f'test topic: {test_topic}')
test_data = process_test_data(sentences, [test_topic], list(parent_cand), max_seq_length,ent_sent_index, ename2embed_bert, tokenizer)
print(f"test data point number: {len(test_data)}")
# if len(test_data) > 10000:
# test_data = sample(test_data, 10000)
entity_ratio, entity_count = relation_inference(test_data, model, TEST_BATCH_SIZE,mode='child')
parent_entity_ratio_alltopics[test_topic] = entity_ratio
parent_entity_count_alltopics[test_topic] = entity_count
parent_entities_count = sum_all_rel(topic_hier['ROOT'], parent_entity_count_alltopics, mode='parent')
parent_result = get_threshold_from_dict(parent_entities_count, 1/2)
parent_result = type_consistent_for_list(parent_result, rep_words, ename2embed_bert, False)
print(f'Discover {len(parent_result)} root nodes!')
print(parent_result)
print('------------------New topic finding!------------------')
topic_cand = defaultdict(int)
for topic in parent_result:
for ent in ent_ent_index[topic]:
topic_cand[ent] += 1
topic_cand = [x for x in topic_cand if topic_cand[x] >= len(parent_result)/2]
remove_list = []
for topic in child_entities_count:
remove_list.extend(child_entities_count[topic])
remove_list.extend(parent_result)
tmp = []
for topic in topic_cand:
if topic not in remove_list:
tmp.append(topic)
topic_cand = tmp
topic_entity_ratio_alltopics = {}
topic_entity_count_alltopics = {}
for test_topic in parent_result:
print(f'test topic: {test_topic}')
test_data = process_test_data(sentences, [test_topic], list(topic_cand), max_seq_length,ent_sent_index, ename2embed_bert, tokenizer)
print(f"test data point number: {len(test_data)}")
if len(test_data) > 10000:
test_data = sample(test_data, 10000)
entity_ratio, entity_count = relation_inference(test_data, model, TEST_BATCH_SIZE,mode='child')
topic_entity_ratio_alltopics[test_topic] = entity_ratio
topic_entity_count_alltopics[test_topic] = entity_count
topic_entities_count = sum_all_rel(parent_result, topic_entity_count_alltopics, mode='child')
topic_entities = get_threshold_from_dict(topic_entities_count, 1/3)
cap_list = [word_cap[x] for x in topic_hier['ROOT']]
print([(x, word_cap[x]) for x in topic_entities if x in word_cap])
topic_entities = get_cap_from_topics(topic_entities, word_cap, cap_list)
for t in topic_hier['ROOT']:
if t in topic_hier:
for t1 in topic_hier[t]:
if t1 in topic_entities:
topic_entities.remove(t1)
# topic_entities = [x for x in topic_entities if word_cap[x] < max(cap_list) and word_cap[x] > min(cap_list)]
# topic_entities = type_consistent_for_list(topic_entities, rep_words, ename2embed_bert, False)
# print(topic_entities)
for t in topic_hier['ROOT']:
if t in topic_hier:
for t1 in topic_hier[t]:
if t1 in topic_entities:
topic_entities.remove(t1)
for t1 in child_entities[t]:
if t1 in topic_entities:
topic_entities.remove(t1)
print(topic_entities)
print('------------------Subtopic finding for new topics!------------------')
topic_hier1 = {}
topic_hier1['ROOT']= topic_entities
for topic in topic_hier:
if topic == 'ROOT':
for t in topic_hier[topic]:
if t not in topic_hier1[topic]:
topic_hier1[topic].append(t)
else:
topic_hier1[topic] = [x for x in topic_hier[topic]]
# print(topic_hier)
save_tree_to_file(topic_hier1, 'intermediate.txt')
entity_ratio_alltopics1 = {}
entity_count_alltopics1 = {}
for test_topic in topic_hier1['ROOT']:
if test_topic in topic_hier['ROOT']:
entity_ratio_alltopics1[test_topic] = entity_ratio_alltopics[test_topic]
entity_count_alltopics1[test_topic] = entity_count_alltopics[test_topic]
continue
sim_ranking = topic_sim(test_topic, vocabulary_inv, topic_emb, word_emb)
cap_ranking, target_cap = rank_cap_customed(word_cap, vocabulary_inv, [vocabulary[word] for word in topic_hier[train_topic]])
coefficient = max(word_cap[test_topic] / word_cap[train_topic],1)
test_cand = aggregate_ranking(sim_ranking, cap_ranking, word_cap, test_topic, vocabulary_inv, pretrain, ent_sent_index, target_cap*coefficient)
print(f'test topic: {test_topic}')
test_data = process_test_data(sentences, [test_topic], test_cand, max_seq_length,ent_sent_index, ename2embed_bert, tokenizer)
print(f"test data point number: {len(test_data)}")
entity_ratio, entity_count = relation_inference(test_data, model, TEST_BATCH_SIZE)
entity_ratio_alltopics1[test_topic] = entity_ratio
entity_count_alltopics1[test_topic] = entity_count
child_entities_count1 = sum_all_rel(topic_hier1['ROOT'], entity_count_alltopics1, mode='child')
child_entities1 = type_consistent(child_entities_count1, ename2embed_bert)
for ent in topic_hier1['ROOT']:
if ent not in child_entities1:
topic_hier1['ROOT'].remove(ent)
clusters_all = {}
k=0
start_list = [0]
for j,topic in enumerate(topic_hier1['ROOT']):
X = []
for ent in child_entities1[topic]:
if ent not in word_emb:
continue
X.append(word_emb[ent])
if len(X) == 0:
continue
X = np.array(X)
clustering = AffinityPropagation().fit(X)
n_clusters = max(clustering.labels_) + 1
clusters = {}
for i in range(n_clusters):
clusters[str(i)] = [child_entities1[topic][x] for x in range(len(clustering.labels_)) if clustering.labels_[x] == i]
clusters_all[str(k)] = clusters[str(i)]
k+=1
start_list.append(k)
new_clusters = type_consistent_cocluster(clusters_all, ename2embed_bert, n_cluster_min = 2, print_cls = True, save_file='dblp_field+_cls8')
print(start_list)
tmp = defaultdict(list)
topic_idx = 0
for k in range(len(clusters_all)):
if k >= start_list[topic_idx]:
# print('\n',topic_hier1['ROOT'][topic_idx])
topic_idx += 1
if str(k) in new_clusters and len(new_clusters[str(k)]) > 1:
# print(new_clusters[str(k)])
tmp[topic_hier1['ROOT'][topic_idx-1]].append(new_clusters[str(k)])
child_entities1 = tmp
for t in topic_hier['ROOT']:
child_entities1[t] = child_entities[t]
print('------------------Outputing the topical taxonomy!------------------')
for t in topic_hier1['ROOT']:
if len(child_entities1[t]) == 0:
continue
print(t)
for l in child_entities1[t]:
print(l)
print('')
# print the keyword taxonomy, nodes in which will be enriched later by concept learning.
with open(os.path.join(dataset, args.out_file), 'w') as fout:
for topic in topic_hier1['ROOT']:
if len(child_entities1[topic]) > 0:
fout.write(topic+'\n')
for cls in child_entities1[topic]:
fout.write(' '.join(cls)+'\n')
fout.write('\n')
for topic in topic_hier1['ROOT']:
if len(child_entities1[topic]) > 0:
with open(os.path.join(dataset, 'topics_'+topic+'.txt'),'w') as fout:
for cls in child_entities1[topic]:
fout.write(' '.join(cls)+'\n')