Skip to content

Latest commit

 

History

History
123 lines (95 loc) · 5.09 KB

README.md

File metadata and controls

123 lines (95 loc) · 5.09 KB

Alpaca-Pairs-Trading-Bot

Pairs Trading Bot built using Alpaca API. The bot uses Mean Reversion strategy with a few alterations. Read along to understand the buy/sell criteria:

  1. Calculate mean and standard deviation of the spread of stocks A and B.
  2. If mean - nstd_dev > spread (last candle formed), buy A, sell B, else (if mean - nstd_dev < spread) vice-versa. The value of "n" can be changed in configFile.txt.
  3. The bot closes both positions once the spread reaches mean (or mean +- n*std_dev. This option can also be explored using the configFile.txt) again.
  4. Repeat steps 1-4

Functions Used

  1. Collects data for both tickers, calculates spread and returns a df with 4 columns: timestamp, A (price of A at close of the candle), B, and Spread
def get_data(ticker_A, ticker_B, timeframe = timeframe, start_date = int(start_date)):
    
    print('Collecting ticker A')
    df_A = api.get_bars(ticker_A, timeframe, (dt.now() - timedelta(days = start_date)).strftime("%Y-%m-%d")).df
    df_A.reset_index(inplace = True)
    df_A = df_A[['timestamp', 'close']]
    df_A.columns = ['Timestamp', "A"]
    df_A['Timestamp'] = pd.to_datetime(df_A['Timestamp']).dt.strftime('%Y-%m-%d %H:%M')
    
    print('Collecting ticker B')
    df_B = api.get_bars(ticker_B, timeframe, (dt.now() - timedelta(days = start_date)).strftime("%Y-%m-%d")).df
    df_B.reset_index(inplace = True)
    df_B = df_B[['timestamp', 'close']]
    df_B.columns = ['Timestamp', "B"]
    df_B['Timestamp'] = pd.to_datetime(df_B['Timestamp']).dt.strftime('%Y-%m-%d %H:%M')

    df = pd.merge(df_A, df_B, how = 'inner', on = 'Timestamp')
    df['Spread'] = df['A'] - df['B']

    return df
  1. Calculates required position size for the stock to buy
def calculate_targetPositionSize(stock_to_buy: str):
    # Returns number of stocks to buy and short
    cashToUse = float(api.get_account().cash) * per_trade_capital_percent * 0.01
    buy_amount = cashToUse
    price_ticker = api.get_latest_trade(stock_to_buy).p
    targetPositionSize = ((float(buy_amount)) / (price_ticker)) # Calculates required position size
    targetPositionSize = math.floor(targetPositionSize)
    return targetPositionSize
  1. Places long and short orders and returns 2 strings that will be used to alert the user the moment trades are placed
def open_trades(stock_to_buy, stock_to_short, targetPositionSize):

    buy_price = api.get_latest_trade(stock_to_buy).p
    sell_price = api.get_latest_trade(stock_to_short).p

    # num_stocks = short_amount / stock_price
    api.submit_order(stock_to_short, targetPositionSize, 'sell')
    mail_content_short = '''TRADE ALERT: SELL Order Placed for {} Stock(s) of {} at ${}'''.format(targetPositionSize, stock_to_short, sell_price)

    api.submit_order(str(stock_to_buy), targetPositionSize, "buy") # Market order to open position
    mail_content_long = '''TRADE ALERT: BUY Order Placed for {} Stock(s) of {} at ${}'''.format(targetPositionSize, stock_to_buy, buy_price)
    print(mail_content_long)
    print(mail_content_short)
    return mail_content_long, mail_content_short
  1. Sends mail alerts
def mail_alert(mail_content, sleep_time):
    # The mail addresses and password
    sender_address = 'SENDER_EMAIL'
    sender_pass = 'SENDER_EMAIL_PASSWORD'
    receiver_address = 'RECEIVER_EMAIL'

    # Setup MIME
    message = MIMEMultipart()
    message['From'] = 'Trading Bot'
    message['To'] = receiver_address
    message['Subject'] = 'Technical Trading Bot'
    
    # The body and the attachments for the mail
    message.attach(MIMEText(mail_content, 'plain'))

    # Create SMTP session for sending the mail
    session = smtplib.SMTP('smtp.gmail.com', 587)  # use gmail with port
    session.starttls()  # enable security

    # login with mail_id and password
    session.login(sender_address, sender_pass)
    text = message.as_string()
    session.sendmail(sender_address, receiver_address, text)
    session.quit()
    time.sleep(sleep_time)
  1. Sometimes the user may want to wait for some time before they trading because of high bid/ask spread at the start of the market. The following function would help with it. It calculates the time to wait before starting to trade and sleeps till then.
def check_clock():
    
    if api.get_clock().is_open == False:
        return False
    
    wait_time = minutes_from_market_start * 60 

    market_start_time = dt.now().strftime('%Y-%m-%d') + ' 9:30:00'
    current_time = dt.now().astimezone(pytz.timezone('America/New_York')).strftime('%Y-%m-%d %H:%M:%S')
    time_since_start = (dt.strptime(current_time,"%Y-%m-%d %H:%M:%S") - dt.strptime(market_start_time,"%Y-%m-%d %H:%M:%S")).seconds

    trade_start = time_since_start >= wait_time

    if trade_start:
        mail_content = 'The Bot started on {} at {}'.format(dt.now().strftime('%Y-%m-%d'), dt.now().strftime('%H:%M:%S'))
        print(mail_content)
        mail_alert(mail_content, 0)
        return True
    else:
        print("Sleeping for {}".format(wait_time - time_since_start))
        time.sleep(wait_time - time_since_start)
        return check_clock()