forked from aimagelab/show-control-and-tell
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
283 lines (238 loc) · 13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from speaksee.data import TextField, ImageDetectionsField
from data import COCOControlSequenceField
from data.dataset import COCOEntities, PairedDataset
from models import ControllableCaptioningModel
from speaksee.data import DataLoader, RawField
from speaksee import evaluation
from torch.optim import Adam
from torch.optim.lr_scheduler import StepLR
from torch.nn import NLLLoss
from utils import NWNounAligner
from config import *
import torch
import random
import argparse
import itertools
import numpy as np
import os
from tqdm import tqdm
random.seed(1234)
torch.manual_seed(1234)
device = torch.device('cuda')
parser = argparse.ArgumentParser()
parser.add_argument('--exp_name', default='show_control_and_tell', type=str, help='experiment name')
parser.add_argument('--nb_workers', default=0, type=int, help='number of workers')
parser.add_argument('--batch_size', default=100, type=int, help='batch size')
parser.add_argument('--lr', default=5e-4, type=float, help='initial learning rate')
parser.add_argument('--step_size', default=3, type=int, help='learning rate schedule step size')
parser.add_argument('--gamma', default=0.8, type=float, help='learning rate schedule gamma')
parser.add_argument('--h2_first_lstm', default=1, type=int, help='h2 as input to the first lstm')
parser.add_argument('--img_second_lstm', default=0, type=int, help='img vector as input to the second lstm')
parser.add_argument('--sample_rl', action='store_true', help='reinforcement learning with cider optimization')
parser.add_argument('--sample_rl_nw', action='store_true', help='reinforcement learning with cider + nw optimization')
opt = parser.parse_args()
print(opt)
image_field = ImageDetectionsField(detections_path=os.path.join(coco_root, 'coco_detections.hdf5'), load_in_tmp=False)
det_field = COCOControlSequenceField(detections_path=os.path.join(coco_root, 'coco_detections.hdf5'),
classes_path=os.path.join(coco_root, 'object_class_list.txt'),
pad_init=False, padding_idx=-1, all_boxes=False, fix_length=20)
text_field = TextField(init_token='<bos>', eos_token='<eos>', lower=True, remove_punctuation=True, fix_length=20)
dataset = COCOEntities(image_field, det_field, text_field,
img_root='',
ann_root=os.path.join(coco_root, 'annotations'),
entities_file=os.path.join(coco_root, 'coco_entities.json'),
id_root=os.path.join(coco_root, 'annotations'))
train_dataset, val_dataset, _ = dataset.splits
text_field.build_vocab(train_dataset, val_dataset, min_freq=5)
test_dataset = COCOEntities(image_field, det_field, RawField(),
img_root='',
ann_root=os.path.join(coco_root, 'annotations'),
entities_file=os.path.join(coco_root, 'coco_entities.json'),
id_root=os.path.join(coco_root, 'annotations'),
filtering=True)
_, val_dataset, _ = test_dataset.splits
if opt.sample_rl or opt.sample_rl_nw:
train_dataset.fields['text'] = RawField()
train_dataset_raw = PairedDataset(train_dataset.examples, {'image': image_field, 'detection': det_field, 'text': RawField()})
ref_caps_train = list(train_dataset_raw.text)
cider_train = evaluation.Cider(evaluation.PTBTokenizer.tokenize(ref_caps_train))
dataloader_train = DataLoader(train_dataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.nb_workers)
val_dataset.fields['text'] = RawField()
dataloader_val = DataLoader(val_dataset, batch_size=16, num_workers=opt.nb_workers)
model = ControllableCaptioningModel(20, len(text_field.vocab), text_field.vocab.stoi['<bos>'],
h2_first_lstm=opt.h2_first_lstm, img_second_lstm=opt.img_second_lstm).to(device)
optim = Adam(model.parameters(), lr=opt.lr)
scheduler = StepLR(optim, step_size=opt.step_size, gamma=opt.gamma)
loss_fn = NLLLoss()
loss_fn_gate = NLLLoss(ignore_index=-1)
start_epoch = 0
best_cider = .0
patience = 0
if opt.sample_rl or opt.sample_rl_nw:
saved_data = torch.load('saved_models/%s_best.pth' % opt.exp_name)
print("Loading from epoch %d, with validation CIDER %.02f" % (saved_data['epoch'], saved_data['val_cider']))
start_epoch = saved_data['epoch'] + 1
model.load_state_dict(saved_data['state_dict'])
best_cider = saved_data['best_cider']
if opt.sample_rl_nw:
nw_aligner = NWNounAligner(pre_comp_file=os.path.join(coco_root, 'coco_noun_glove.pkl'), normalized=True)
for e in range(start_epoch, start_epoch+100):
if not opt.sample_rl and not opt.sample_rl_nw:
# Training with cross-entropy
model.train()
running_loss = .0
running_loss_gate = .0
with tqdm(desc='Epoch %d - train' % e, unit='it', total=len(iter(dataloader_train))) as pbar:
for it, (detections, ctrl_det_seqs, ctrl_det_gts, _, _, captions) in enumerate(iter(dataloader_train)):
detections, ctrl_det_seqs = detections.to(device), ctrl_det_seqs.to(device)
ctrl_det_gts, captions = ctrl_det_gts.to(device), captions.to(device)
out, gate = model((detections, ), (captions, ctrl_det_seqs))
optim.zero_grad()
captions = captions[:, 1:].contiguous()
out = out[:, :-1].contiguous()
loss_cap = loss_fn(out.view(-1, len(text_field.vocab)), captions.view(-1))
loss_gate = loss_fn_gate(gate.view(-1, 2), ctrl_det_gts.view(-1).long())
loss = loss_cap + 4*loss_gate
loss.backward()
optim.step()
running_loss += loss_cap.item()
running_loss_gate += loss_gate.item()
pbar.set_postfix(loss_cap=running_loss / (it+1), loss_gate=running_loss_gate / (it+1))
pbar.update()
scheduler.step()
else:
# Baseline captions
model.eval()
baselines = []
with tqdm(desc='Epoch %d - baseline' % e, unit='it', total=len(iter(dataloader_train))) as pbar:
with torch.no_grad():
for it, (detections, ctrl_det_seqs, ctrl_det_gts, ctrl_det_seqs_test, _, caps_gt) in enumerate(iter(dataloader_train)):
detections, ctrl_det_seqs_test = detections.to(device), ctrl_det_seqs_test.to(device)
outs_baseline, _ = model.test(detections, ctrl_det_seqs_test)
caps_baseline = text_field.decode(outs_baseline.cpu().numpy(), join_words=False)
bas = []
for i, bas_i in enumerate(caps_baseline):
bas_i = ' '.join([k for k, g in itertools.groupby(bas_i)])
bas.append(bas_i)
baselines.append(bas)
pbar.update()
# Training with self-critical
model.train()
running_loss = .0
running_loss_gate = .0
running_loss_nw = .0
running_reward = .0
running_reward_nw = .0
with tqdm(desc='Epoch %d - train' % e, unit='it', total=len(iter(dataloader_train))) as pbar:
for it, (detections, ctrl_det_seqs, ctrl_det_gts, ctrl_det_seqs_test, _, caps_gt) in enumerate(iter(dataloader_train)):
detections, ctrl_det_seqs = detections.to(device), ctrl_det_seqs.to(device)
ctrl_det_gts, ctrl_det_seqs_test = ctrl_det_gts.to(device), ctrl_det_seqs_test.to(device)
outs, log_probs = model.sample_rl(detections, ctrl_det_seqs_test)
optim.zero_grad()
caps_gen = text_field.decode(outs[0].detach().cpu().numpy(), join_words=False)
gts = []
gen = []
scores = []
scores_baseline = []
if not opt.sample_rl_nw:
for i, (gts_i, gen_i) in enumerate(zip(caps_gt, caps_gen)):
gen_i = ' '.join([k for k, g in itertools.groupby(gen_i)])
gts.append([gts_i, ])
gen.append(gen_i)
else:
for i, (gts_i, bas_i, gen_i) in enumerate(zip(caps_gt, baselines[it], caps_gen)):
gen_i = ' '.join([k for k, g in itertools.groupby(gen_i)])
gts.append([gts_i, ])
gen.append(gen_i)
scores.append((1 + nw_aligner.score(gts_i, gen_i)) / 2.)
scores_baseline.append((1 + nw_aligner.score(gts_i, bas_i)) / 2.)
caps_gt = evaluation.PTBTokenizer.tokenize(gts)
caps_gen = evaluation.PTBTokenizer.tokenize(gen)
caps_baseline = evaluation.PTBTokenizer.tokenize(baselines[it])
reward = cider_train.compute_score(caps_gt, caps_gen)[1].astype(np.float32)
reward_baseline = cider_train.compute_score(caps_gt, caps_baseline)[1].astype(np.float32)
reward = torch.from_numpy(reward).to(device)
reward_baseline = torch.from_numpy(reward_baseline).to(device)
if not opt.sample_rl_nw:
loss_cap = -(torch.mean(log_probs[0], -1) + torch.mean(log_probs[1], -1)) * (reward - reward_baseline)
loss_cap = loss_cap.mean()
loss = loss_cap
loss.backward()
optim.step()
running_loss += loss_cap.item()
running_reward += torch.mean(reward - reward_baseline).item()
pbar.set_postfix(loss=running_loss / (it + 1), reward=running_reward / (it + 1))
pbar.update()
else:
reward_nw = torch.cat(scores).to(device)
reward_nw_baseline = torch.cat(scores_baseline).to(device)
loss_cap = -(torch.mean(log_probs[0], -1) + torch.mean(log_probs[1], -1)) * (reward - reward_baseline)
loss_cap = loss_cap.mean()
loss_nw = -(torch.mean(log_probs[0], -1) + torch.mean(log_probs[1], -1)) * (reward_nw - reward_nw_baseline)
loss_nw = loss_nw.mean()
loss = loss_cap + 4*loss_nw
loss.backward()
optim.step()
running_loss += loss_cap.item()
running_loss_nw += loss_nw.item()
running_reward += torch.mean(reward - reward_baseline).item()
running_reward_nw += torch.mean(reward_nw - reward_nw_baseline).item()
pbar.set_postfix(loss=running_loss / (it + 1), loss_nw=running_loss_nw / (it + 1),
reward=running_reward / (it + 1), reward_nw=running_reward_nw / (it + 1))
pbar.update()
# Validation with CIDEr
gen = []
gts = []
max_len = 20
model.eval()
with tqdm(desc='Test', unit='it', total=len(iter(dataloader_val))) as pbar:
with torch.no_grad():
for it, (detections, ctrl_det_seqs, ctrl_det_gts, ctrl_det_seqs_test, _, captions) in enumerate(iter(dataloader_val)):
detections, ctrl_det_seqs = detections.to(device), ctrl_det_seqs.to(device)
ctrl_det_seqs_test = ctrl_det_seqs_test.to(device)
out, gate = model.test(detections, ctrl_det_seqs_test)
caps_gen = text_field.decode(out, join_words=False)
for i, (gts_i, gen_i) in enumerate(zip(captions, caps_gen)):
gen_i = ' '.join([k for k, g in itertools.groupby(gen_i)])
gen.append(gen_i)
gts.append([gts_i, ])
pbar.update()
gts = evaluation.PTBTokenizer.tokenize(gts)
gen = evaluation.PTBTokenizer.tokenize(gen)
val_bleu, _ = evaluation.Bleu(n=4).compute_score(gts, gen)
method = ['Blue_1', 'Bleu_2', 'Bleu_3', 'Bleu_4']
for metric, score in zip(method, val_bleu):
print(metric, score)
val_meteor, _ = evaluation.Meteor().compute_score(gts, gen)
print('METEOR', val_meteor)
val_rouge, _ = evaluation.Rouge().compute_score(gts, gen)
print('ROUGE_L', val_rouge)
val_cider, _ = evaluation.Cider().compute_score(gts, gen)
print('CIDEr', val_cider)
saved_data = {
'epoch': e,
'opt': opt,
'val_cider': val_cider,
'patience': patience,
'best_cider': best_cider,
'state_dict': model.state_dict(),
'optimizer': optim.state_dict(),
'scheduler': scheduler.state_dict(),
}
if not os.path.exists('saved_models/'):
os.makedirs('saved_models/')
if val_cider >= best_cider:
best_cider = val_cider
best_srt = 'best_rl' if opt.sample_rl else 'best'
best_srt = 'best_rl_nw' if opt.sample_rl_nw else best_srt
patience = 0
saved_data['best_cider'] = best_cider
saved_data['patience'] = patience
torch.save(saved_data, 'saved_models/%s_%s.pth' % (opt.exp_name, best_srt))
else:
patience += 1
saved_data['patience'] = patience
torch.save(saved_data, 'saved_models/%s_last.pth' % opt.exp_name)
if patience == 5:
print('patience ended.')
break