-
Notifications
You must be signed in to change notification settings - Fork 45.7k
/
eval.py
78 lines (65 loc) · 2.64 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Script to evaluate a trained Attention OCR model.
A simple usage example:
python eval.py
"""
import tensorflow as tf
from tensorflow.contrib import slim
from tensorflow import app
from tensorflow.compat.v1 import flags
import data_provider
import common_flags
FLAGS = flags.FLAGS
common_flags.define()
# yapf: disable
flags.DEFINE_integer('num_batches', 100,
'Number of batches to run eval for.')
flags.DEFINE_string('eval_log_dir', '/tmp/attention_ocr/eval',
'Directory where the evaluation results are saved to.')
flags.DEFINE_integer('eval_interval_secs', 60,
'Frequency in seconds to run evaluations.')
flags.DEFINE_integer('number_of_steps', None,
'Number of times to run evaluation.')
# yapf: enable
def main(_):
if not tf.io.gfile.exists(FLAGS.eval_log_dir):
tf.io.gfile.makedirs(FLAGS.eval_log_dir)
dataset = common_flags.create_dataset(split_name=FLAGS.split_name)
model = common_flags.create_model(dataset.num_char_classes,
dataset.max_sequence_length,
dataset.num_of_views, dataset.null_code)
data = data_provider.get_data(
dataset,
FLAGS.batch_size,
augment=False,
central_crop_size=common_flags.get_crop_size())
endpoints = model.create_base(data.images, labels_one_hot=None)
model.create_loss(data, endpoints)
eval_ops = model.create_summaries(
data, endpoints, dataset.charset, is_training=False)
slim.get_or_create_global_step()
session_config = tf.compat.v1.ConfigProto(device_count={"GPU": 0})
slim.evaluation.evaluation_loop(
master=FLAGS.master,
checkpoint_dir=FLAGS.train_log_dir,
logdir=FLAGS.eval_log_dir,
eval_op=eval_ops,
num_evals=FLAGS.num_batches,
eval_interval_secs=FLAGS.eval_interval_secs,
max_number_of_evaluations=FLAGS.number_of_steps,
session_config=session_config)
if __name__ == '__main__':
app.run()