-
Notifications
You must be signed in to change notification settings - Fork 45.7k
/
model.py
757 lines (632 loc) · 27.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions to build the Attention OCR model.
Usage example:
ocr_model = model.Model(num_char_classes, seq_length, num_of_views)
data = ... # create namedtuple InputEndpoints
endpoints = model.create_base(data.images, data.labels_one_hot)
# endpoints.predicted_chars is a tensor with predicted character codes.
total_loss = model.create_loss(data, endpoints)
"""
import sys
import collections
import logging
import numpy as np
import tensorflow as tf
from tensorflow.contrib import slim
from tensorflow.contrib.slim.nets import inception
import metrics
import sequence_layers
import utils
OutputEndpoints = collections.namedtuple('OutputEndpoints', [
'chars_logit', 'chars_log_prob', 'predicted_chars', 'predicted_scores',
'predicted_text', 'predicted_length', 'predicted_conf',
'normalized_seq_conf'
])
# TODO(gorban): replace with tf.HParams when it is released.
ModelParams = collections.namedtuple(
'ModelParams', ['num_char_classes', 'seq_length', 'num_views', 'null_code'])
ConvTowerParams = collections.namedtuple('ConvTowerParams', ['final_endpoint'])
SequenceLogitsParams = collections.namedtuple('SequenceLogitsParams', [
'use_attention', 'use_autoregression', 'num_lstm_units', 'weight_decay',
'lstm_state_clip_value'
])
SequenceLossParams = collections.namedtuple(
'SequenceLossParams',
['label_smoothing', 'ignore_nulls', 'average_across_timesteps'])
EncodeCoordinatesParams = collections.namedtuple('EncodeCoordinatesParams',
['enabled'])
def _dict_to_array(id_to_char, default_character):
num_char_classes = max(id_to_char.keys()) + 1
array = [default_character] * num_char_classes
for k, v in id_to_char.items():
array[k] = v
return array
class CharsetMapper(object):
"""A simple class to map tensor ids into strings.
It works only when the character set is 1:1 mapping between individual
characters and individual ids.
Make sure you call tf.tables_initializer().run() as part of the init op.
"""
def __init__(self, charset, default_character='?'):
"""Creates a lookup table.
Args:
charset: a dictionary with id-to-character mapping.
"""
mapping_strings = tf.constant(_dict_to_array(charset, default_character))
self.table = tf.contrib.lookup.index_to_string_table_from_tensor(
mapping=mapping_strings, default_value=default_character)
def get_text(self, ids):
"""Returns a string corresponding to a sequence of character ids.
Args:
ids: a tensor with shape [batch_size, max_sequence_length]
"""
return tf.strings.reduce_join(
inputs=self.table.lookup(tf.cast(ids, dtype=tf.int64)), axis=1)
def get_softmax_loss_fn(label_smoothing):
"""Returns sparse or dense loss function depending on the label_smoothing.
Args:
label_smoothing: weight for label smoothing
Returns:
a function which takes labels and predictions as arguments and returns
a softmax loss for the selected type of labels (sparse or dense).
"""
if label_smoothing > 0:
def loss_fn(labels, logits):
return (tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=tf.stop_gradient(labels)))
else:
def loss_fn(labels, logits):
return tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels)
return loss_fn
def get_tensor_dimensions(tensor):
"""Returns the shape components of a 4D tensor with variable batch size.
Args:
tensor : A 4D tensor, whose last 3 dimensions are known at graph
construction time.
Returns:
batch_size : The first dimension as a tensor object.
height : The second dimension as a scalar value.
width : The third dimension as a scalar value.
num_features : The forth dimension as a scalar value.
Raises:
ValueError: if input tensor does not have 4 dimensions.
"""
if len(tensor.get_shape().dims) != 4:
raise ValueError(
'Incompatible shape: len(tensor.get_shape().dims) != 4 (%d != 4)' %
len(tensor.get_shape().dims))
batch_size = tf.shape(input=tensor)[0]
height = tensor.get_shape().dims[1].value
width = tensor.get_shape().dims[2].value
num_features = tensor.get_shape().dims[3].value
return batch_size, height, width, num_features
def lookup_indexed_value(indices, row_vecs):
"""Lookup values in each row of 'row_vecs' indexed by 'indices'.
For each sample in the batch, look up the element for the corresponding
index.
Args:
indices : A tensor of shape (batch, )
row_vecs : A tensor of shape [batch, depth]
Returns:
A tensor of shape (batch, ) formed by row_vecs[i, indices[i]].
"""
gather_indices = tf.stack((tf.range(
tf.shape(input=row_vecs)[0], dtype=tf.int32), tf.cast(indices, tf.int32)),
axis=1)
return tf.gather_nd(row_vecs, gather_indices)
@utils.ConvertAllInputsToTensors
def max_char_logprob_cumsum(char_log_prob):
"""Computes the cumulative sum of character logprob for all sequence lengths.
Args:
char_log_prob: A tensor of shape [batch x seq_length x num_char_classes]
with log probabilities of a character.
Returns:
A tensor of shape [batch x (seq_length+1)] where each element x[_, j] is
the sum of the max char logprob for all positions upto j.
Note this duplicates the final column and produces (seq_length+1) columns
so the same function can be used regardless whether use_length_predictions
is true or false.
"""
max_char_log_prob = tf.reduce_max(input_tensor=char_log_prob, axis=2)
# For an input array [a, b, c]) tf.cumsum returns [a, a + b, a + b + c] if
# exclusive set to False (default).
return tf.cumsum(max_char_log_prob, axis=1, exclusive=False)
def find_length_by_null(predicted_chars, null_code):
"""Determine sequence length by finding null_code among predicted char IDs.
Given the char class ID for each position, compute the sequence length.
Note that this function computes this based on the number of null_code,
instead of the position of the first null_code.
Args:
predicted_chars: A tensor of [batch x seq_length] where each element stores
the char class ID with max probability;
null_code: an int32, character id for the NULL.
Returns:
A [batch, ] tensor which stores the sequence length for each sample.
"""
return tf.reduce_sum(
input_tensor=tf.cast(tf.not_equal(null_code, predicted_chars), tf.int32), axis=1)
def axis_pad(tensor, axis, before=0, after=0, constant_values=0.0):
"""Pad a tensor with the specified values along a single axis.
Args:
tensor: a Tensor;
axis: the dimension to add pad along to;
before: number of values to add before the contents of tensor in the
selected dimension;
after: number of values to add after the contents of tensor in the selected
dimension;
constant_values: the scalar pad value to use. Must be same type as tensor.
Returns:
A Tensor. Has the same type as the input tensor, but with a changed shape
along the specified dimension.
"""
if before == 0 and after == 0:
return tensor
ndims = tensor.shape.ndims
padding_size = np.zeros((ndims, 2), dtype='int32')
padding_size[axis] = before, after
return tf.pad(
tensor=tensor,
paddings=tf.constant(padding_size),
constant_values=constant_values)
def null_based_length_prediction(chars_log_prob, null_code):
"""Computes length and confidence of prediction based on positions of NULLs.
Args:
chars_log_prob: A tensor of shape [batch x seq_length x num_char_classes]
with log probabilities of a character;
null_code: an int32, character id for the NULL.
Returns:
A tuple (text_log_prob, predicted_length), where
text_log_prob - is a tensor of the same shape as length_log_prob.
Element #0 of the output corresponds to probability of the empty string,
element #seq_length - is the probability of length=seq_length.
predicted_length is a tensor with shape [batch].
"""
predicted_chars = tf.cast(
tf.argmax(input=chars_log_prob, axis=2), dtype=tf.int32)
# We do right pad to support sequences with seq_length elements.
text_log_prob = max_char_logprob_cumsum(
axis_pad(chars_log_prob, axis=1, after=1))
predicted_length = find_length_by_null(predicted_chars, null_code)
return text_log_prob, predicted_length
class Model(object):
"""Class to create the Attention OCR Model."""
def __init__(self,
num_char_classes,
seq_length,
num_views,
null_code,
mparams=None,
charset=None):
"""Initialized model parameters.
Args:
num_char_classes: size of character set.
seq_length: number of characters in a sequence.
num_views: Number of views (conv towers) to use.
null_code: A character code corresponding to a character which indicates
end of a sequence.
mparams: a dictionary with hyper parameters for methods, keys - function
names, values - corresponding namedtuples.
charset: an optional dictionary with a mapping between character ids and
utf8 strings. If specified the OutputEndpoints.predicted_text will utf8
encoded strings corresponding to the character ids returned by
OutputEndpoints.predicted_chars (by default the predicted_text contains
an empty vector).
NOTE: Make sure you call tf.tables_initializer().run() if the charset
specified.
"""
super(Model, self).__init__()
self._params = ModelParams(
num_char_classes=num_char_classes,
seq_length=seq_length,
num_views=num_views,
null_code=null_code)
self._mparams = self.default_mparams()
if mparams:
self._mparams.update(mparams)
self._charset = charset
def default_mparams(self):
return {
'conv_tower_fn':
ConvTowerParams(final_endpoint='Mixed_5d'),
'sequence_logit_fn':
SequenceLogitsParams(
use_attention=True,
use_autoregression=True,
num_lstm_units=256,
weight_decay=0.00004,
lstm_state_clip_value=10.0),
'sequence_loss_fn':
SequenceLossParams(
label_smoothing=0.1,
ignore_nulls=True,
average_across_timesteps=False),
'encode_coordinates_fn':
EncodeCoordinatesParams(enabled=False)
}
def set_mparam(self, function, **kwargs):
self._mparams[function] = self._mparams[function]._replace(**kwargs)
def conv_tower_fn(self, images, is_training=True, reuse=None):
"""Computes convolutional features using the InceptionV3 model.
Args:
images: A tensor of shape [batch_size, height, width, channels].
is_training: whether is training or not.
reuse: whether or not the network and its variables should be reused. To
be able to reuse 'scope' must be given.
Returns:
A tensor of shape [batch_size, OH, OW, N], where OWxOH is resolution of
output feature map and N is number of output features (depends on the
network architecture).
"""
mparams = self._mparams['conv_tower_fn']
logging.debug('Using final_endpoint=%s', mparams.final_endpoint)
with tf.compat.v1.variable_scope('conv_tower_fn/INCE'):
if reuse:
tf.compat.v1.get_variable_scope().reuse_variables()
with slim.arg_scope(inception.inception_v3_arg_scope()):
with slim.arg_scope([slim.batch_norm, slim.dropout],
is_training=is_training):
net, _ = inception.inception_v3_base(
images, final_endpoint=mparams.final_endpoint)
return net
def _create_lstm_inputs(self, net):
"""Splits an input tensor into a list of tensors (features).
Args:
net: A feature map of shape [batch_size, num_features, feature_size].
Raises:
AssertionError: if num_features is less than seq_length.
Returns:
A list with seq_length tensors of shape [batch_size, feature_size]
"""
num_features = net.get_shape().dims[1].value
if num_features < self._params.seq_length:
raise AssertionError(
'Incorrect dimension #1 of input tensor'
' %d should be bigger than %d (shape=%s)' %
(num_features, self._params.seq_length, net.get_shape()))
elif num_features > self._params.seq_length:
logging.warning('Ignoring some features: use %d of %d (shape=%s)',
self._params.seq_length, num_features, net.get_shape())
net = tf.slice(net, [0, 0, 0], [-1, self._params.seq_length, -1])
return tf.unstack(net, axis=1)
def sequence_logit_fn(self, net, labels_one_hot):
mparams = self._mparams['sequence_logit_fn']
# TODO(gorban): remove /alias suffixes from the scopes.
with tf.compat.v1.variable_scope('sequence_logit_fn/SQLR'):
layer_class = sequence_layers.get_layer_class(mparams.use_attention,
mparams.use_autoregression)
layer = layer_class(net, labels_one_hot, self._params, mparams)
return layer.create_logits()
def max_pool_views(self, nets_list):
"""Max pool across all nets in spatial dimensions.
Args:
nets_list: A list of 4D tensors with identical size.
Returns:
A tensor with the same size as any input tensors.
"""
batch_size, height, width, num_features = [
d.value for d in nets_list[0].get_shape().dims
]
xy_flat_shape = (batch_size, 1, height * width, num_features)
nets_for_merge = []
with tf.compat.v1.variable_scope('max_pool_views', values=nets_list):
for net in nets_list:
nets_for_merge.append(tf.reshape(net, xy_flat_shape))
merged_net = tf.concat(nets_for_merge, 1)
net = slim.max_pool2d(
merged_net, kernel_size=[len(nets_list), 1], stride=1)
net = tf.reshape(net, (batch_size, height, width, num_features))
return net
def pool_views_fn(self, nets):
"""Combines output of multiple convolutional towers into a single tensor.
It stacks towers one on top another (in height dim) in a 4x1 grid.
The order is arbitrary design choice and shouldn't matter much.
Args:
nets: list of tensors of shape=[batch_size, height, width, num_features].
Returns:
A tensor of shape [batch_size, seq_length, features_size].
"""
with tf.compat.v1.variable_scope('pool_views_fn/STCK'):
net = tf.concat(nets, 1)
batch_size = tf.shape(input=net)[0]
image_size = net.get_shape().dims[1].value * \
net.get_shape().dims[2].value
feature_size = net.get_shape().dims[3].value
return tf.reshape(net, tf.stack([batch_size, image_size, feature_size]))
def char_predictions(self, chars_logit):
"""Returns confidence scores (softmax values) for predicted characters.
Args:
chars_logit: chars logits, a tensor with shape [batch_size x seq_length x
num_char_classes]
Returns:
A tuple (ids, log_prob, scores), where:
ids - predicted characters, a int32 tensor with shape
[batch_size x seq_length];
log_prob - a log probability of all characters, a float tensor with
shape [batch_size, seq_length, num_char_classes];
scores - corresponding confidence scores for characters, a float
tensor
with shape [batch_size x seq_length].
"""
log_prob = utils.logits_to_log_prob(chars_logit)
ids = tf.cast(tf.argmax(input=log_prob, axis=2),
name='predicted_chars', dtype=tf.int32)
mask = tf.cast(
slim.one_hot_encoding(ids, self._params.num_char_classes), tf.bool)
all_scores = tf.nn.softmax(chars_logit)
selected_scores = tf.boolean_mask(
tensor=all_scores, mask=mask, name='char_scores')
scores = tf.reshape(
selected_scores,
shape=(-1, self._params.seq_length),
name='predicted_scores')
return ids, log_prob, scores
def encode_coordinates_fn(self, net):
"""Adds one-hot encoding of coordinates to different views in the networks.
For each "pixel" of a feature map it adds a onehot encoded x and y
coordinates.
Args:
net: a tensor of shape=[batch_size, height, width, num_features]
Returns:
a tensor with the same height and width, but altered feature_size.
"""
mparams = self._mparams['encode_coordinates_fn']
if mparams.enabled:
batch_size, h, w, _ = get_tensor_dimensions(net)
x, y = tf.meshgrid(tf.range(w), tf.range(h))
w_loc = slim.one_hot_encoding(x, num_classes=w)
h_loc = slim.one_hot_encoding(y, num_classes=h)
loc = tf.concat([h_loc, w_loc], 2)
loc = tf.tile(tf.expand_dims(loc, 0), tf.stack([batch_size, 1, 1, 1]))
return tf.concat([net, loc], 3)
else:
return net
def create_base(self,
images,
labels_one_hot,
scope='AttentionOcr_v1',
reuse=None):
"""Creates a base part of the Model (no gradients, losses or summaries).
Args:
images: A tensor of shape [batch_size, height, width, channels] with pixel
values in the range [0.0, 1.0].
labels_one_hot: Optional (can be None) one-hot encoding for ground truth
labels. If provided the function will create a model for training.
scope: Optional variable_scope.
reuse: whether or not the network and its variables should be reused. To
be able to reuse 'scope' must be given.
Returns:
A named tuple OutputEndpoints.
"""
logging.debug('images: %s', images)
is_training = labels_one_hot is not None
# Normalize image pixel values to have a symmetrical range around zero.
images = tf.subtract(images, 0.5)
images = tf.multiply(images, 2.5)
with tf.compat.v1.variable_scope(scope, reuse=reuse):
views = tf.split(
value=images, num_or_size_splits=self._params.num_views, axis=2)
logging.debug('Views=%d single view: %s', len(views), views[0])
nets = [
self.conv_tower_fn(v, is_training, reuse=(i != 0))
for i, v in enumerate(views)
]
logging.debug('Conv tower: %s', nets[0])
nets = [self.encode_coordinates_fn(net) for net in nets]
logging.debug('Conv tower w/ encoded coordinates: %s', nets[0])
net = self.pool_views_fn(nets)
logging.debug('Pooled views: %s', net)
chars_logit = self.sequence_logit_fn(net, labels_one_hot)
logging.debug('chars_logit: %s', chars_logit)
predicted_chars, chars_log_prob, predicted_scores = (
self.char_predictions(chars_logit))
if self._charset:
character_mapper = CharsetMapper(self._charset)
predicted_text = character_mapper.get_text(predicted_chars)
else:
predicted_text = tf.constant([])
text_log_prob, predicted_length = null_based_length_prediction(
chars_log_prob, self._params.null_code)
predicted_conf = lookup_indexed_value(predicted_length, text_log_prob)
# Convert predicted confidence from sum of logs to geometric mean
normalized_seq_conf = tf.exp(
tf.divide(predicted_conf,
tf.cast(predicted_length + 1, predicted_conf.dtype)),
name='normalized_seq_conf')
predicted_conf = tf.identity(predicted_conf, name='predicted_conf')
predicted_text = tf.identity(predicted_text, name='predicted_text')
predicted_length = tf.identity(predicted_length, name='predicted_length')
return OutputEndpoints(
chars_logit=chars_logit,
chars_log_prob=chars_log_prob,
predicted_chars=predicted_chars,
predicted_scores=predicted_scores,
predicted_length=predicted_length,
predicted_text=predicted_text,
predicted_conf=predicted_conf,
normalized_seq_conf=normalized_seq_conf)
def create_loss(self, data, endpoints):
"""Creates all losses required to train the model.
Args:
data: InputEndpoints namedtuple.
endpoints: Model namedtuple.
Returns:
Total loss.
"""
# NOTE: the return value of ModelLoss is not used directly for the
# gradient computation because under the hood it calls slim.losses.AddLoss,
# which registers the loss in an internal collection and later returns it
# as part of GetTotalLoss. We need to use total loss because model may have
# multiple losses including regularization losses.
self.sequence_loss_fn(endpoints.chars_logit, data.labels)
total_loss = slim.losses.get_total_loss()
tf.compat.v1.summary.scalar('TotalLoss', total_loss)
return total_loss
def label_smoothing_regularization(self, chars_labels, weight=0.1):
"""Applies a label smoothing regularization.
Uses the same method as in https://arxiv.org/abs/1512.00567.
Args:
chars_labels: ground truth ids of characters, shape=[batch_size,
seq_length];
weight: label-smoothing regularization weight.
Returns:
A sensor with the same shape as the input.
"""
one_hot_labels = tf.one_hot(
chars_labels, depth=self._params.num_char_classes, axis=-1)
pos_weight = 1.0 - weight
neg_weight = weight / self._params.num_char_classes
return one_hot_labels * pos_weight + neg_weight
def sequence_loss_fn(self, chars_logits, chars_labels):
"""Loss function for char sequence.
Depending on values of hyper parameters it applies label smoothing and can
also ignore all null chars after the first one.
Args:
chars_logits: logits for predicted characters, shape=[batch_size,
seq_length, num_char_classes];
chars_labels: ground truth ids of characters, shape=[batch_size,
seq_length];
mparams: method hyper parameters.
Returns:
A Tensor with shape [batch_size] - the log-perplexity for each sequence.
"""
mparams = self._mparams['sequence_loss_fn']
with tf.compat.v1.variable_scope('sequence_loss_fn/SLF'):
if mparams.label_smoothing > 0:
smoothed_one_hot_labels = self.label_smoothing_regularization(
chars_labels, mparams.label_smoothing)
labels_list = tf.unstack(smoothed_one_hot_labels, axis=1)
else:
# NOTE: in case of sparse softmax we are not using one-hot
# encoding.
labels_list = tf.unstack(chars_labels, axis=1)
batch_size, seq_length, _ = chars_logits.shape.as_list()
if mparams.ignore_nulls:
weights = tf.ones((batch_size, seq_length), dtype=tf.float32)
else:
# Suppose that reject character is the last in the charset.
reject_char = tf.constant(
self._params.num_char_classes - 1,
shape=(batch_size, seq_length),
dtype=tf.int64)
known_char = tf.not_equal(chars_labels, reject_char)
weights = tf.cast(known_char, dtype=tf.float32)
logits_list = tf.unstack(chars_logits, axis=1)
weights_list = tf.unstack(weights, axis=1)
loss = tf.contrib.legacy_seq2seq.sequence_loss(
logits_list,
labels_list,
weights_list,
softmax_loss_function=get_softmax_loss_fn(mparams.label_smoothing),
average_across_timesteps=mparams.average_across_timesteps)
tf.compat.v1.losses.add_loss(loss)
return loss
def create_summaries(self, data, endpoints, charset, is_training):
"""Creates all summaries for the model.
Args:
data: InputEndpoints namedtuple.
endpoints: OutputEndpoints namedtuple.
charset: A dictionary with mapping between character codes and unicode
characters. Use the one provided by a dataset.charset.
is_training: If True will create summary prefixes for training job,
otherwise - for evaluation.
Returns:
A list of evaluation ops
"""
def sname(label):
prefix = 'train' if is_training else 'eval'
return '%s/%s' % (prefix, label)
max_outputs = 4
# TODO(gorban): uncomment, when tf.summary.text released.
# charset_mapper = CharsetMapper(charset)
# pr_text = charset_mapper.get_text(
# endpoints.predicted_chars[:max_outputs,:])
# tf.summary.text(sname('text/pr'), pr_text)
# gt_text = charset_mapper.get_text(data.labels[:max_outputs,:])
# tf.summary.text(sname('text/gt'), gt_text)
tf.compat.v1.summary.image(
sname('image'), data.images, max_outputs=max_outputs)
if is_training:
tf.compat.v1.summary.image(
sname('image/orig'), data.images_orig, max_outputs=max_outputs)
for var in tf.compat.v1.trainable_variables():
tf.compat.v1.summary.histogram(var.op.name, var)
return None
else:
names_to_values = {}
names_to_updates = {}
def use_metric(name, value_update_tuple):
names_to_values[name] = value_update_tuple[0]
names_to_updates[name] = value_update_tuple[1]
use_metric(
'CharacterAccuracy',
metrics.char_accuracy(
endpoints.predicted_chars,
data.labels,
streaming=True,
rej_char=self._params.null_code))
# Sequence accuracy computed by cutting sequence at the first null char
use_metric(
'SequenceAccuracy',
metrics.sequence_accuracy(
endpoints.predicted_chars,
data.labels,
streaming=True,
rej_char=self._params.null_code))
for name, value in names_to_values.items():
summary_name = 'eval/' + name
tf.compat.v1.summary.scalar(
summary_name, tf.compat.v1.Print(value, [value], summary_name))
return list(names_to_updates.values())
def create_init_fn_to_restore(self,
master_checkpoint,
inception_checkpoint=None):
"""Creates an init operations to restore weights from various checkpoints.
Args:
master_checkpoint: path to a checkpoint which contains all weights for the
whole model.
inception_checkpoint: path to a checkpoint which contains weights for the
inception part only.
Returns:
a function to run initialization ops.
"""
all_assign_ops = []
all_feed_dict = {}
def assign_from_checkpoint(variables, checkpoint):
logging.info('Request to re-store %d weights from %s', len(variables),
checkpoint)
if not variables:
logging.error('Can\'t find any variables to restore.')
sys.exit(1)
assign_op, feed_dict = slim.assign_from_checkpoint(checkpoint, variables)
all_assign_ops.append(assign_op)
all_feed_dict.update(feed_dict)
logging.info('variables_to_restore:\n%s',
utils.variables_to_restore().keys())
logging.info('moving_average_variables:\n%s',
[v.op.name for v in tf.compat.v1.moving_average_variables()])
logging.info('trainable_variables:\n%s',
[v.op.name for v in tf.compat.v1.trainable_variables()])
if master_checkpoint:
assign_from_checkpoint(utils.variables_to_restore(), master_checkpoint)
if inception_checkpoint:
variables = utils.variables_to_restore(
'AttentionOcr_v1/conv_tower_fn/INCE', strip_scope=True)
assign_from_checkpoint(variables, inception_checkpoint)
def init_assign_fn(sess):
logging.info('Restoring checkpoint(s)')
sess.run(all_assign_ops, all_feed_dict)
return init_assign_fn