-
Notifications
You must be signed in to change notification settings - Fork 45.7k
/
Copy pathexporter_lib_tf2_test.py
379 lines (333 loc) · 15.8 KB
/
exporter_lib_tf2_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test for exporter_lib_v2.py."""
from __future__ import division
import io
import os
import unittest
from absl.testing import parameterized
import numpy as np
from PIL import Image
import six
import tensorflow.compat.v2 as tf
from object_detection import exporter_lib_v2
from object_detection.builders import model_builder
from object_detection.core import model
from object_detection.core import standard_fields as fields
from object_detection.protos import pipeline_pb2
from object_detection.utils import dataset_util
from object_detection.utils import tf_version
if six.PY2:
import mock # pylint: disable=g-importing-member,g-import-not-at-top
else:
from unittest import mock # pylint: disable=g-importing-member,g-import-not-at-top
class FakeModel(model.DetectionModel):
def __init__(self, conv_weight_scalar=1.0):
super(FakeModel, self).__init__(num_classes=2)
self._conv = tf.keras.layers.Conv2D(
filters=1, kernel_size=1, strides=(1, 1), padding='valid',
kernel_initializer=tf.keras.initializers.Constant(
value=conv_weight_scalar))
def preprocess(self, inputs):
return tf.identity(inputs), exporter_lib_v2.get_true_shapes(inputs)
def predict(self, preprocessed_inputs, true_image_shapes, **side_inputs):
return_dict = {'image': self._conv(preprocessed_inputs)}
if 'side_inp_1' in side_inputs:
return_dict['image'] += side_inputs['side_inp_1']
return return_dict
def postprocess(self, prediction_dict, true_image_shapes):
predict_tensor_sum = tf.reduce_sum(prediction_dict['image'])
with tf.control_dependencies(list(prediction_dict.values())):
postprocessed_tensors = {
'detection_boxes': tf.constant([[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]], tf.float32),
'detection_scores': predict_tensor_sum + tf.constant(
[[0.7, 0.6], [0.9, 0.0]], tf.float32),
'detection_classes': tf.constant([[0, 1],
[1, 0]], tf.float32),
'num_detections': tf.constant([2, 1], tf.float32),
}
return postprocessed_tensors
def predict_masks_from_boxes(self, prediction_dict, true_image_shapes, boxes):
output_dict = self.postprocess(prediction_dict, true_image_shapes)
output_dict.update({
'detection_masks': tf.ones(shape=(1, 2, 16), dtype=tf.float32),
})
return output_dict
def restore_map(self, checkpoint_path, fine_tune_checkpoint_type):
pass
def restore_from_objects(self, fine_tune_checkpoint_type):
pass
def loss(self, prediction_dict, true_image_shapes):
pass
def regularization_losses(self):
pass
def updates(self):
pass
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class ExportInferenceGraphTest(tf.test.TestCase, parameterized.TestCase):
def _save_checkpoint_from_mock_model(
self, checkpoint_dir, conv_weight_scalar=6.0):
mock_model = FakeModel(conv_weight_scalar)
fake_image = tf.zeros(shape=[1, 10, 10, 3], dtype=tf.float32)
preprocessed_inputs, true_image_shapes = mock_model.preprocess(fake_image)
predictions = mock_model.predict(preprocessed_inputs, true_image_shapes)
mock_model.postprocess(predictions, true_image_shapes)
ckpt = tf.train.Checkpoint(model=mock_model)
exported_checkpoint_manager = tf.train.CheckpointManager(
ckpt, checkpoint_dir, max_to_keep=1)
exported_checkpoint_manager.save(checkpoint_number=0)
@parameterized.parameters(
{'input_type': 'image_tensor'},
{'input_type': 'encoded_image_string_tensor'},
{'input_type': 'tf_example'},
)
def test_export_yields_correct_directory_structure(
self, input_type='image_tensor'):
tmp_dir = self.get_temp_dir()
self._save_checkpoint_from_mock_model(tmp_dir)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
exporter_lib_v2.INPUT_BUILDER_UTIL_MAP['model_build'] = mock_builder
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter_lib_v2.export_inference_graph(
input_type=input_type,
pipeline_config=pipeline_config,
trained_checkpoint_dir=tmp_dir,
output_directory=output_directory)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'saved_model.pb')))
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'variables', 'variables.index')))
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'variables',
'variables.data-00000-of-00001')))
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'checkpoint', 'ckpt-0.index')))
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'checkpoint', 'ckpt-0.data-00000-of-00001')))
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'pipeline.config')))
def get_dummy_input(self, input_type):
"""Get dummy input for the given input type."""
if input_type == 'image_tensor':
return np.zeros((1, 20, 20, 3), dtype=np.uint8)
if input_type == 'float_image_tensor':
return np.zeros((1, 20, 20, 3), dtype=np.float32)
elif input_type == 'encoded_image_string_tensor':
image = Image.new('RGB', (20, 20))
byte_io = io.BytesIO()
image.save(byte_io, 'PNG')
return [byte_io.getvalue()]
elif input_type == 'tf_example':
image_tensor = tf.zeros((20, 20, 3), dtype=tf.uint8)
encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).numpy()
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded':
dataset_util.bytes_feature(encoded_jpeg),
'image/format':
dataset_util.bytes_feature(six.b('jpeg')),
'image/source_id':
dataset_util.bytes_feature(six.b('image_id')),
})).SerializeToString()
return [example]
@parameterized.parameters(
{'input_type': 'image_tensor'},
{'input_type': 'encoded_image_string_tensor'},
{'input_type': 'tf_example'},
{'input_type': 'float_image_tensor'},
)
def test_export_saved_model_and_run_inference(
self, input_type='image_tensor'):
tmp_dir = self.get_temp_dir()
self._save_checkpoint_from_mock_model(tmp_dir)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
exporter_lib_v2.INPUT_BUILDER_UTIL_MAP['model_build'] = mock_builder
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter_lib_v2.export_inference_graph(
input_type=input_type,
pipeline_config=pipeline_config,
trained_checkpoint_dir=tmp_dir,
output_directory=output_directory)
saved_model_path = os.path.join(output_directory, 'saved_model')
detect_fn = tf.saved_model.load(saved_model_path)
image = self.get_dummy_input(input_type)
detections = detect_fn(tf.constant(image))
detection_fields = fields.DetectionResultFields
self.assertAllClose(detections[detection_fields.detection_boxes],
[[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(detections[detection_fields.detection_scores],
[[0.7, 0.6], [0.9, 0.0]])
self.assertAllClose(detections[detection_fields.detection_classes],
[[1, 2], [2, 1]])
self.assertAllClose(detections[detection_fields.num_detections], [2, 1])
@parameterized.parameters(
{'use_default_serving': True},
{'use_default_serving': False}
)
def test_export_saved_model_and_run_inference_with_side_inputs(
self, input_type='image_tensor', use_default_serving=True):
tmp_dir = self.get_temp_dir()
self._save_checkpoint_from_mock_model(tmp_dir)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
exporter_lib_v2.INPUT_BUILDER_UTIL_MAP['model_build'] = mock_builder
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter_lib_v2.export_inference_graph(
input_type=input_type,
pipeline_config=pipeline_config,
trained_checkpoint_dir=tmp_dir,
output_directory=output_directory,
use_side_inputs=True,
side_input_shapes='1/2,2',
side_input_names='side_inp_1,side_inp_2',
side_input_types='tf.float32,tf.uint8')
saved_model_path = os.path.join(output_directory, 'saved_model')
detect_fn = tf.saved_model.load(saved_model_path)
detect_fn_sig = detect_fn.signatures['serving_default']
image = tf.constant(self.get_dummy_input(input_type))
side_input_1 = np.ones((1,), dtype=np.float32)
side_input_2 = np.ones((2, 2), dtype=np.uint8)
if use_default_serving:
detections = detect_fn_sig(input_tensor=image,
side_inp_1=tf.constant(side_input_1),
side_inp_2=tf.constant(side_input_2))
else:
detections = detect_fn(image,
tf.constant(side_input_1),
tf.constant(side_input_2))
detection_fields = fields.DetectionResultFields
self.assertAllClose(detections[detection_fields.detection_boxes],
[[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(detections[detection_fields.detection_scores],
[[400.7, 400.6], [400.9, 400.0]])
self.assertAllClose(detections[detection_fields.detection_classes],
[[1, 2], [2, 1]])
self.assertAllClose(detections[detection_fields.num_detections], [2, 1])
def test_export_checkpoint_and_run_inference_with_image(self):
tmp_dir = self.get_temp_dir()
self._save_checkpoint_from_mock_model(tmp_dir, conv_weight_scalar=2.0)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
exporter_lib_v2.INPUT_BUILDER_UTIL_MAP['model_build'] = mock_builder
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter_lib_v2.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_dir=tmp_dir,
output_directory=output_directory)
mock_model = FakeModel()
ckpt = tf.compat.v2.train.Checkpoint(
model=mock_model)
checkpoint_dir = os.path.join(tmp_dir, 'output', 'checkpoint')
manager = tf.compat.v2.train.CheckpointManager(
ckpt, checkpoint_dir, max_to_keep=7)
ckpt.restore(manager.latest_checkpoint).expect_partial()
fake_image = tf.ones(shape=[1, 5, 5, 3], dtype=tf.float32)
preprocessed_inputs, true_image_shapes = mock_model.preprocess(fake_image)
predictions = mock_model.predict(preprocessed_inputs, true_image_shapes)
detections = mock_model.postprocess(predictions, true_image_shapes)
# 150 = conv_weight_scalar * height * width * channels = 2 * 5 * 5 * 3.
self.assertAllClose(detections['detection_scores'],
[[150 + 0.7, 150 + 0.6], [150 + 0.9, 150 + 0.0]])
class DetectionFromImageAndBoxModuleTest(tf.test.TestCase):
def get_dummy_input(self, input_type):
"""Get dummy input for the given input type."""
if input_type == 'image_tensor' or input_type == 'image_and_boxes_tensor':
return np.zeros((1, 20, 20, 3), dtype=np.uint8)
if input_type == 'float_image_tensor':
return np.zeros((1, 20, 20, 3), dtype=np.float32)
elif input_type == 'encoded_image_string_tensor':
image = Image.new('RGB', (20, 20))
byte_io = io.BytesIO()
image.save(byte_io, 'PNG')
return [byte_io.getvalue()]
elif input_type == 'tf_example':
image_tensor = tf.zeros((20, 20, 3), dtype=tf.uint8)
encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).numpy()
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded':
dataset_util.bytes_feature(encoded_jpeg),
'image/format':
dataset_util.bytes_feature(six.b('jpeg')),
'image/source_id':
dataset_util.bytes_feature(six.b('image_id')),
})).SerializeToString()
return [example]
def _save_checkpoint_from_mock_model(self,
checkpoint_dir,
conv_weight_scalar=6.0):
mock_model = FakeModel(conv_weight_scalar)
fake_image = tf.zeros(shape=[1, 10, 10, 3], dtype=tf.float32)
preprocessed_inputs, true_image_shapes = mock_model.preprocess(fake_image)
predictions = mock_model.predict(preprocessed_inputs, true_image_shapes)
mock_model.postprocess(predictions, true_image_shapes)
ckpt = tf.train.Checkpoint(model=mock_model)
exported_checkpoint_manager = tf.train.CheckpointManager(
ckpt, checkpoint_dir, max_to_keep=1)
exported_checkpoint_manager.save(checkpoint_number=0)
def test_export_saved_model_and_run_inference_for_segmentation(
self, input_type='image_and_boxes_tensor'):
tmp_dir = self.get_temp_dir()
self._save_checkpoint_from_mock_model(tmp_dir)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
exporter_lib_v2.INPUT_BUILDER_UTIL_MAP['model_build'] = mock_builder
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter_lib_v2.export_inference_graph(
input_type=input_type,
pipeline_config=pipeline_config,
trained_checkpoint_dir=tmp_dir,
output_directory=output_directory)
saved_model_path = os.path.join(output_directory, 'saved_model')
detect_fn = tf.saved_model.load(saved_model_path)
image = self.get_dummy_input(input_type)
boxes = tf.constant([
[
[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8],
],
])
detections = detect_fn(tf.constant(image), boxes)
detection_fields = fields.DetectionResultFields
self.assertIn(detection_fields.detection_masks, detections)
self.assertListEqual(
list(detections[detection_fields.detection_masks].shape), [1, 2, 16])
if __name__ == '__main__':
tf.enable_v2_behavior()
tf.test.main()