diff --git a/model_analysis_docs/Models/albert/pt_albert_base_v1_masked_lm.md b/model_analysis_docs/Models/albert/pt_albert_base_v1_masked_lm.md index 702d1bd0a..963defe19 100644 --- a/model_analysis_docs/Models/albert/pt_albert_base_v1_masked_lm.md +++ b/model_analysis_docs/Models/albert/pt_albert_base_v1_masked_lm.md @@ -90,8 +90,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -99,34 +99,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) + + + + + � + Gelu @@ -186,7 +226,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -196,7 +236,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -242,11 +282,11 @@ Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -272,11 +312,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -292,11 +332,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/albert/pt_albert_base_v1_token_cls.md b/model_analysis_docs/Models/albert/pt_albert_base_v1_token_cls.md index 2974afdac..2cbf0d3b4 100644 --- a/model_analysis_docs/Models/albert/pt_albert_base_v1_token_cls.md +++ b/model_analysis_docs/Models/albert/pt_albert_base_v1_token_cls.md @@ -80,8 +80,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -89,34 +89,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) + + + + + � + Gelu @@ -166,7 +206,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -176,7 +216,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -212,11 +252,11 @@ Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -242,11 +282,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -262,11 +302,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/albert/pt_albert_base_v2_masked_lm.md b/model_analysis_docs/Models/albert/pt_albert_base_v2_masked_lm.md index 2611fee17..bc8d64042 100644 --- a/model_analysis_docs/Models/albert/pt_albert_base_v2_masked_lm.md +++ b/model_analysis_docs/Models/albert/pt_albert_base_v2_masked_lm.md @@ -90,8 +90,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -99,34 +99,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) + + + + + � + Gelu @@ -186,7 +226,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -196,7 +236,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -242,11 +282,11 @@ Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -272,11 +312,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -292,11 +332,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/albert/pt_albert_base_v2_token_cls.md b/model_analysis_docs/Models/albert/pt_albert_base_v2_token_cls.md index 851970676..d455054a3 100644 --- a/model_analysis_docs/Models/albert/pt_albert_base_v2_token_cls.md +++ b/model_analysis_docs/Models/albert/pt_albert_base_v2_token_cls.md @@ -80,8 +80,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -89,34 +89,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) + + + + + � + Gelu @@ -166,7 +206,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -176,7 +216,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -212,11 +252,11 @@ Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -242,11 +282,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -262,11 +302,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/albert/pt_albert_large_v1_masked_lm.md b/model_analysis_docs/Models/albert/pt_albert_large_v1_masked_lm.md index 83a7b85d2..d5f8773ea 100644 --- a/model_analysis_docs/Models/albert/pt_albert_large_v1_masked_lm.md +++ b/model_analysis_docs/Models/albert/pt_albert_large_v1_masked_lm.md @@ -90,8 +90,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -99,34 +99,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) + + + + + � + Gelu @@ -186,7 +226,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -196,7 +236,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -232,11 +272,11 @@ Matmul Operand(type=Activation, shape=(128, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -262,11 +302,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -282,11 +322,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/albert/pt_albert_large_v1_token_cls.md b/model_analysis_docs/Models/albert/pt_albert_large_v1_token_cls.md index f89cb1d88..00ed82d4e 100644 --- a/model_analysis_docs/Models/albert/pt_albert_large_v1_token_cls.md +++ b/model_analysis_docs/Models/albert/pt_albert_large_v1_token_cls.md @@ -80,8 +80,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -89,34 +89,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) + + + + + � + Gelu @@ -166,7 +206,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -176,7 +216,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -212,11 +252,11 @@ Matmul Operand(type=Activation, shape=(128, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -242,11 +282,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -262,11 +302,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/albert/pt_albert_large_v2_masked_lm.md b/model_analysis_docs/Models/albert/pt_albert_large_v2_masked_lm.md index 5cf2df0f8..bceca96d5 100644 --- a/model_analysis_docs/Models/albert/pt_albert_large_v2_masked_lm.md +++ b/model_analysis_docs/Models/albert/pt_albert_large_v2_masked_lm.md @@ -90,8 +90,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -99,34 +99,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) + + + + + � + Gelu @@ -186,7 +226,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -196,7 +236,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -232,11 +272,11 @@ Matmul Operand(type=Activation, shape=(128, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -262,11 +302,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -282,11 +322,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/albert/pt_albert_large_v2_token_cls.md b/model_analysis_docs/Models/albert/pt_albert_large_v2_token_cls.md index f7f99da9c..ceb7ad836 100644 --- a/model_analysis_docs/Models/albert/pt_albert_large_v2_token_cls.md +++ b/model_analysis_docs/Models/albert/pt_albert_large_v2_token_cls.md @@ -80,8 +80,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -89,34 +89,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) + + + + + � + Gelu @@ -166,7 +206,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -176,7 +216,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -212,11 +252,11 @@ Matmul Operand(type=Activation, shape=(128, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -242,11 +282,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -262,11 +302,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/albert/pt_albert_xlarge_v1_masked_lm.md b/model_analysis_docs/Models/albert/pt_albert_xlarge_v1_masked_lm.md index 1e9983936..5ef751fb6 100644 --- a/model_analysis_docs/Models/albert/pt_albert_xlarge_v1_masked_lm.md +++ b/model_analysis_docs/Models/albert/pt_albert_xlarge_v1_masked_lm.md @@ -90,8 +90,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -99,34 +99,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) + + + + + � + Gelu @@ -186,7 +226,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -196,7 +236,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -232,11 +272,11 @@ Matmul Operand(type=Activation, shape=(128, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,11 +292,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -272,11 +312,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 8192), dtype=float32)
X
Operand(type=Activation, shape=(8192, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/albert/pt_albert_xlarge_v1_token_cls.md b/model_analysis_docs/Models/albert/pt_albert_xlarge_v1_token_cls.md index 3b43598bd..75b7d20ad 100644 --- a/model_analysis_docs/Models/albert/pt_albert_xlarge_v1_token_cls.md +++ b/model_analysis_docs/Models/albert/pt_albert_xlarge_v1_token_cls.md @@ -80,8 +80,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -89,34 +89,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) + + + + + � + Gelu @@ -166,7 +206,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -176,7 +216,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -212,11 +252,11 @@ Matmul Operand(type=Activation, shape=(128, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -232,11 +272,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,11 +292,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 8192), dtype=float32)
X
Operand(type=Activation, shape=(8192, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/albert/pt_albert_xlarge_v2_masked_lm.md b/model_analysis_docs/Models/albert/pt_albert_xlarge_v2_masked_lm.md index e0f672ca2..ac4d13544 100644 --- a/model_analysis_docs/Models/albert/pt_albert_xlarge_v2_masked_lm.md +++ b/model_analysis_docs/Models/albert/pt_albert_xlarge_v2_masked_lm.md @@ -90,8 +90,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -99,34 +99,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) + + + + + � + Gelu @@ -186,7 +226,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -196,7 +236,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -232,11 +272,11 @@ Matmul Operand(type=Activation, shape=(128, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,11 +292,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -272,11 +312,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 8192), dtype=float32)
X
Operand(type=Activation, shape=(8192, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/albert/pt_albert_xlarge_v2_token_cls.md b/model_analysis_docs/Models/albert/pt_albert_xlarge_v2_token_cls.md index e0e1a2984..45944ccb4 100644 --- a/model_analysis_docs/Models/albert/pt_albert_xlarge_v2_token_cls.md +++ b/model_analysis_docs/Models/albert/pt_albert_xlarge_v2_token_cls.md @@ -80,8 +80,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -89,34 +89,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) + + + + + � + Gelu @@ -166,7 +206,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -176,7 +216,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -212,11 +252,11 @@ Matmul Operand(type=Activation, shape=(128, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -232,11 +272,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,11 +292,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 8192), dtype=float32)
X
Operand(type=Activation, shape=(8192, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/albert/pt_albert_xxlarge_v1_masked_lm.md b/model_analysis_docs/Models/albert/pt_albert_xxlarge_v1_masked_lm.md index c25cfa77e..80ebf4881 100644 --- a/model_analysis_docs/Models/albert/pt_albert_xxlarge_v1_masked_lm.md +++ b/model_analysis_docs/Models/albert/pt_albert_xxlarge_v1_masked_lm.md @@ -90,8 +90,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -99,34 +99,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Gelu @@ -186,7 +226,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -196,7 +236,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -232,11 +272,11 @@ Matmul Operand(type=Activation, shape=(128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -262,41 +302,41 @@ Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 16384), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 128, 16384), dtype=float32)
X
Operand(type=Activation, shape=(16384, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 128), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/albert/pt_albert_xxlarge_v1_token_cls.md b/model_analysis_docs/Models/albert/pt_albert_xxlarge_v1_token_cls.md index 9f2a86af1..778b59d48 100644 --- a/model_analysis_docs/Models/albert/pt_albert_xxlarge_v1_token_cls.md +++ b/model_analysis_docs/Models/albert/pt_albert_xxlarge_v1_token_cls.md @@ -80,8 +80,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -89,34 +89,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) + + + + + � + Gelu @@ -166,7 +206,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -176,7 +216,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -212,11 +252,11 @@ Matmul Operand(type=Activation, shape=(128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -242,41 +282,41 @@ Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 16384), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 128, 16384), dtype=float32)
X
Operand(type=Activation, shape=(16384, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 2), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/albert/pt_albert_xxlarge_v2_masked_lm.md b/model_analysis_docs/Models/albert/pt_albert_xxlarge_v2_masked_lm.md index c7f1b20e8..16ccf6e6a 100644 --- a/model_analysis_docs/Models/albert/pt_albert_xxlarge_v2_masked_lm.md +++ b/model_analysis_docs/Models/albert/pt_albert_xxlarge_v2_masked_lm.md @@ -90,8 +90,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -99,34 +99,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Gelu @@ -186,7 +226,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -196,7 +236,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -232,11 +272,11 @@ Matmul Operand(type=Activation, shape=(128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -262,41 +302,41 @@ Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 16384), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 128, 16384), dtype=float32)
X
Operand(type=Activation, shape=(16384, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 128), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/albert/pt_albert_xxlarge_v2_token_cls.md b/model_analysis_docs/Models/albert/pt_albert_xxlarge_v2_token_cls.md index 5dcbf0a35..fc0315faa 100644 --- a/model_analysis_docs/Models/albert/pt_albert_xxlarge_v2_token_cls.md +++ b/model_analysis_docs/Models/albert/pt_albert_xxlarge_v2_token_cls.md @@ -80,8 +80,8 @@ Cast - Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) - dtype : torch.float32 + Operand(type=Parameter, shape=(30000, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ ✅ @@ -89,34 +89,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30000, 128), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 128, 128), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 128), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 128), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 128), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1, 128), dtype=int64) + dtype : torch.float32 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 128), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30000, 128), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 128), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 128), dtype=bfloat16) + + + + + � + Gelu @@ -166,7 +206,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -176,7 +216,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -212,11 +252,11 @@ Matmul Operand(type=Activation, shape=(128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -242,41 +282,41 @@ Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 16384), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 128, 16384), dtype=float32)
X
Operand(type=Activation, shape=(16384, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 2), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/alexnet/pt_alexnet_torchhub.md b/model_analysis_docs/Models/alexnet/pt_alexnet_torchhub.md index 0655c8112..f242c0f22 100644 --- a/model_analysis_docs/Models/alexnet/pt_alexnet_torchhub.md +++ b/model_analysis_docs/Models/alexnet/pt_alexnet_torchhub.md @@ -162,61 +162,61 @@ Matmul Operand(type=Activation, shape=(1, 9216), dtype=float32)
X
Operand(type=Activation, shape=(9216, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 55, 55), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 192, 27, 27), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 256, 13, 13), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Relu diff --git a/model_analysis_docs/Models/autoencoder/pt_conv_ae.md b/model_analysis_docs/Models/autoencoder/pt_conv_ae.md index 2b05a3be8..82d8304c4 100644 --- a/model_analysis_docs/Models/autoencoder/pt_conv_ae.md +++ b/model_analysis_docs/Models/autoencoder/pt_conv_ae.md @@ -102,21 +102,21 @@ MaxPool2d Operand(type=Activation, shape=(1, 16, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 4, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Relu diff --git a/model_analysis_docs/Models/bart/pt_bart.md b/model_analysis_docs/Models/bart/pt_bart.md index 9f20c7a75..0e0ed779d 100644 --- a/model_analysis_docs/Models/bart/pt_bart.md +++ b/model_analysis_docs/Models/bart/pt_bart.md @@ -88,6 +88,36 @@ + + Cast + Operand(type=Parameter, shape=(50265, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 256, 1024), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(1026, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Cast Operand(type=Activation, shape=(1, 1, 256, 256), dtype=int64) @@ -120,23 +150,23 @@ Embedding - Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Parameter, shape=(50265, 1024), dtype=float32) + Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Activation, shape=(50265, 1024), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Embedding - Operand(type=Constant, name=const_00, dtype=int64)
X
Operand(type=Parameter, shape=(1026, 1024), dtype=float32) + Operand(type=Constant, name=const_00, dtype=int64)
X
Operand(type=Activation, shape=(1026, 1024), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 + + � + Gelu @@ -202,11 +232,11 @@ Matmul Operand(type=Activation, shape=(256, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -232,11 +262,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,11 +282,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/bert/pt_bert_masked_lm.md b/model_analysis_docs/Models/bert/pt_bert_masked_lm.md index 01acf215d..412f3a18b 100644 --- a/model_analysis_docs/Models/bert/pt_bert_masked_lm.md +++ b/model_analysis_docs/Models/bert/pt_bert_masked_lm.md @@ -69,34 +69,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30522, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(30522, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 128, 768), dtype=bfloat16) + dtype : torch.float32 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(2, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(512, 768), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30522, 768), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 768), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 768), dtype=bfloat16) + + + + + � + Gelu @@ -146,7 +186,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -156,7 +196,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -172,11 +212,11 @@ Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -202,11 +242,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -222,11 +262,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/bert/pt_bert_qa.md b/model_analysis_docs/Models/bert/pt_bert_qa.md index bd495d942..5835ed127 100644 --- a/model_analysis_docs/Models/bert/pt_bert_qa.md +++ b/model_analysis_docs/Models/bert/pt_bert_qa.md @@ -69,34 +69,74 @@ - Embedding - Operand(type=Activation, shape=(1, 384), dtype=int64)
X
Operand(type=Parameter, shape=(28996, 1024), dtype=float32) + Cast + Operand(type=Parameter, shape=(28996, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 384, 1024), dtype=bfloat16) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Activation, shape=(1, 384), dtype=int64)
X
Operand(type=Parameter, shape=(2, 1024), dtype=float32) + Cast + Operand(type=Parameter, shape=(2, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(512, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 384), dtype=int64)
X
Operand(type=Parameter, shape=(512, 1024), dtype=float32) + Operand(type=Activation, shape=(1, 384), dtype=int64)
X
Operand(type=Activation, shape=(28996, 1024), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + + + + Embedding + Operand(type=Activation, shape=(1, 384), dtype=int64)
X
Operand(type=Activation, shape=(2, 1024), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 384), dtype=int64)
X
Operand(type=Activation, shape=(512, 1024), dtype=bfloat16) + + + + + � + Gelu @@ -136,7 +176,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -146,7 +186,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -202,11 +242,11 @@ Matmul Operand(type=Activation, shape=(384, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -242,21 +282,21 @@ Matmul Operand(type=Activation, shape=(1, 384, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(384, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/bert/pt_bert_sequence_classification.md b/model_analysis_docs/Models/bert/pt_bert_sequence_classification.md index 16c563984..007789057 100644 --- a/model_analysis_docs/Models/bert/pt_bert_sequence_classification.md +++ b/model_analysis_docs/Models/bert/pt_bert_sequence_classification.md @@ -69,34 +69,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(28996, 1024), dtype=float32) + Cast + Operand(type=Parameter, shape=(28996, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2, 1024), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 1024), dtype=float32) + Cast + Operand(type=Parameter, shape=(512, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 128, 1024), dtype=bfloat16) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 1024), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(28996, 1024), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 1024), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 1024), dtype=bfloat16) + + + + + � + Gelu @@ -136,7 +176,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -146,7 +186,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -162,11 +202,11 @@ Matmul Operand(type=Activation, shape=(128, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -202,11 +242,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/clip/pt_clip_vit_base_patch32_text.md b/model_analysis_docs/Models/clip/pt_clip_vit_base_patch32_text.md new file mode 100644 index 000000000..6c6d2b367 --- /dev/null +++ b/model_analysis_docs/Models/clip/pt_clip_vit_base_patch32_text.md @@ -0,0 +1,592 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AbsOperand(type=Activation, shape=(2, 1, 7, 7), dtype=float32)
AddOperand(type=Activation, shape=(2, 7, 512), dtype=float32)
X
Operand(type=Activation, shape=(1, 7, 512), dtype=float32)
AddOperand(type=Activation, shape=(2, 7, 512), dtype=float32)
X
Operand(type=Parameter, shape=(512,), dtype=float32)
AddOperand(type=Activation, shape=(2, 8, 7, 7), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32)
AddOperand(type=Activation, shape=(2, 1, 7, 7), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 7, 7), dtype=float32)
AddOperand(type=Activation, shape=(2, 8, 7, 7), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 7, 7), dtype=float32)
AddOperand(type=Activation, shape=(2, 7, 512), dtype=float32)
X
Operand(type=Activation, shape=(2, 7, 512), dtype=float32)
AddOperand(type=Activation, shape=(2, 7, 2048), dtype=float32)
X
Operand(type=Parameter, shape=(2048,), dtype=float32)
CastOperand(type=Parameter, shape=(49408, 512), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(2, 7, 512), dtype=bfloat16)dtype : torch.float32
CastOperand(type=Parameter, shape=(77, 512), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(1, 7, 512), dtype=bfloat16)dtype : torch.float32
CastOperand(type=Activation, shape=(2, 1, 7, 7), dtype=int64)dtype : torch.float32
CastOperand(type=Activation, shape=(2, 1, 7, 7), dtype=uint1)dtype : torch.float32
ClipOperand(type=Activation, shape=(2, 1, 7, 7), dtype=float32)min : 0.0
max : 1.0
EmbeddingOperand(type=Activation, shape=(2, 7), dtype=int64)
X
Operand(type=Activation, shape=(49408, 512), dtype=bfloat16)
EmbeddingOperand(type=Activation, shape=(1, 7), dtype=int64)
X
Operand(type=Activation, shape=(77, 512), dtype=bfloat16)
GreaterOperand(type=Activation, shape=(2, 1, 7, 7), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32)
[TT_METAL][ttnn elementwise binary] RuntimeError BinaryOpType cannot be mapped to BcastOpMath
IdentityOperand(type=Activation, shape=(16, 7, 7), dtype=float32)
IndexOperand(type=Constant, name=clip_model.text_model.embeddings.position_ids, dtype=int64)dim : -1
start : 0
stop : 7
stride : 1
[FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got
LayernormOperand(type=Activation, shape=(2, 7, 512), dtype=float32)
X
Operand(type=Parameter, shape=(512,), dtype=float32)
X
Operand(type=Parameter, shape=(512,), dtype=float32)
dim : -1
epsilon : 1e-05
MatmulOperand(type=Activation, shape=(14, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 512), dtype=float32)
MatmulOperand(type=Activation, shape=(16, 7, 64), dtype=float32)
X
Operand(type=Activation, shape=(16, 64, 7), dtype=float32)
MatmulOperand(type=Activation, shape=(16, 7, 7), dtype=float32)
X
Operand(type=Activation, shape=(16, 7, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(14, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 2048), dtype=float32)
MatmulOperand(type=Activation, shape=(14, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(2, 7, 512), dtype=float32)
X
Operand(type=Constant, name=const_00, dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 1, 7, 7), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 7, 7), dtype=float32)
MultiplyOperand(type=Constant, name=const_50, dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 7, 7), dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 7, 2048), dtype=float32)
X
Operand(type=Constant, name=const_60, dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 7, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2, 7, 2048), dtype=float32)
RepeatInterleaveOperand(type=Activation, shape=(2, 1, 1, 7), dtype=int64)repeats : 1
dim : 1
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(2, 1, 1, 7), dtype=int64)repeats : 7
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(2, 7), dtype=int64)shape : (2, 7)
ReshapeOperand(type=Activation, shape=(2, 7, 512), dtype=float32)shape : (14, 512)
ReshapeOperand(type=Activation, shape=(2, 7, 512), dtype=float32)shape : (2, 7, 8, 64)
ReshapeOperand(type=Activation, shape=(14, 512), dtype=float32)shape : (2, 7, 512)
ReshapeOperand(type=Activation, shape=(2, 8, 7, 64), dtype=float32)shape : (16, 7, 64)
ReshapeOperand(type=Activation, shape=(16, 7, 7), dtype=float32)shape : (2, 8, 7, 7)
ReshapeOperand(type=Activation, shape=(2, 8, 7, 7), dtype=float32)shape : (2, 8, 7, 7)
ReshapeOperand(type=Activation, shape=(2, 8, 7, 7), dtype=float32)shape : (16, 7, 7)
ReshapeOperand(type=Activation, shape=(16, 7, 64), dtype=float32)shape : (2, 8, 7, 64)
ReshapeOperand(type=Activation, shape=(2, 7, 8, 64), dtype=float32)shape : (14, 512)
ReshapeOperand(type=Activation, shape=(14, 2048), dtype=float32)shape : (2, 7, 2048)
ReshapeOperand(type=Activation, shape=(2, 7, 2048), dtype=float32)shape : (14, 2048)
SigmoidOperand(type=Activation, shape=(2, 7, 2048), dtype=float32)
SoftmaxOperand(type=Activation, shape=(16, 7, 7), dtype=float32)dim : -1
SubtractOperand(type=Constant, name=const_20, dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 7, 7), dtype=float32)
TransposeOperand(type=Parameter, shape=(512, 512), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(2048, 512), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(512, 2048), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 7, 8, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(16, 7, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(16, 64, 7), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 8, 7, 64), dtype=float32)dim0 : -3
dim1 : -2
UnsqueezeOperand(type=Activation, shape=(2, 7), dtype=int64)dim : 1
UnsqueezeOperand(type=Activation, shape=(2, 1, 7), dtype=int64)dim : 2
diff --git a/model_analysis_docs/Models/codegen/pt_codegen_350M_mono.md b/model_analysis_docs/Models/codegen/pt_codegen_350M_mono.md index 21e2a5a6b..98c9aa308 100644 --- a/model_analysis_docs/Models/codegen/pt_codegen_350M_mono.md +++ b/model_analysis_docs/Models/codegen/pt_codegen_350M_mono.md @@ -78,6 +78,26 @@ + + Cast + Operand(type=Activation, shape=(1, 256, 1024), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(51200, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(256, 1024), dtype=float32)
X
Operand(type=Activation, shape=(256, 1024), dtype=float32)
X
Operand(type=Activation, shape=(256, 1024), dtype=float32)
X
Operand(type=Activation, shape=(256, 1024), dtype=float32) @@ -100,13 +120,13 @@ Embedding - Operand(type=Activation, shape=(1, 256), dtype=int32)
X
Operand(type=Parameter, shape=(51200, 1024), dtype=float32) + Operand(type=Activation, shape=(1, 256), dtype=int32)
X
Operand(type=Activation, shape=(51200, 1024), dtype=bfloat16) ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Gelu @@ -312,11 +332,11 @@ Matmul Operand(type=Activation, shape=(256, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -342,11 +362,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -552,11 +572,11 @@ Stack Operand(type=Activation, shape=(1, 256, 16, 16), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 16, 16), dtype=float32) axis : -1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][ttnn unsqueeze_to_4D] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/core/core.cpp Tensor rank is greater than 4 Transpose diff --git a/model_analysis_docs/Models/deit/pt_deit_base_distilled_patch16_224.md b/model_analysis_docs/Models/deit/pt_deit_base_distilled_patch16_224.md index 089ef4c12..08253e497 100644 --- a/model_analysis_docs/Models/deit/pt_deit_base_distilled_patch16_224.md +++ b/model_analysis_docs/Models/deit/pt_deit_base_distilled_patch16_224.md @@ -152,11 +152,11 @@ Matmul Operand(type=Activation, shape=(197, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -192,21 +192,21 @@ Matmul Operand(type=Activation, shape=(1, 197, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/deit/pt_deit_base_patch16_224.md b/model_analysis_docs/Models/deit/pt_deit_base_patch16_224.md index 089ef4c12..08253e497 100644 --- a/model_analysis_docs/Models/deit/pt_deit_base_patch16_224.md +++ b/model_analysis_docs/Models/deit/pt_deit_base_patch16_224.md @@ -152,11 +152,11 @@ Matmul Operand(type=Activation, shape=(197, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -192,21 +192,21 @@ Matmul Operand(type=Activation, shape=(1, 197, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/deit/pt_deit_small_patch16_224.md b/model_analysis_docs/Models/deit/pt_deit_small_patch16_224.md index 4ad93d52f..ad8a9a7eb 100644 --- a/model_analysis_docs/Models/deit/pt_deit_small_patch16_224.md +++ b/model_analysis_docs/Models/deit/pt_deit_small_patch16_224.md @@ -192,11 +192,11 @@ Matmul Operand(type=Activation, shape=(1, 197, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 384), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/densenet/pt_densenet121.md b/model_analysis_docs/Models/densenet/pt_densenet121.md index ade5d0d82..6b6522b80 100644 --- a/model_analysis_docs/Models/densenet/pt_densenet121.md +++ b/model_analysis_docs/Models/densenet/pt_densenet121.md @@ -3522,21 +3522,21 @@ Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/densenet/pt_densenet_161.md b/model_analysis_docs/Models/densenet/pt_densenet_161.md index 3e197b7af..7fbb138ee 100644 --- a/model_analysis_docs/Models/densenet/pt_densenet_161.md +++ b/model_analysis_docs/Models/densenet/pt_densenet_161.md @@ -4662,21 +4662,21 @@ Matmul Operand(type=Activation, shape=(1, 2208), dtype=float32)
X
Operand(type=Activation, shape=(2208, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 96, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/densenet/pt_densenet_169.md b/model_analysis_docs/Models/densenet/pt_densenet_169.md index bd64a3211..f9d27250d 100644 --- a/model_analysis_docs/Models/densenet/pt_densenet_169.md +++ b/model_analysis_docs/Models/densenet/pt_densenet_169.md @@ -4922,21 +4922,21 @@ Matmul Operand(type=Activation, shape=(1, 1664), dtype=float32)
X
Operand(type=Activation, shape=(1664, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/densenet/pt_densenet_201.md b/model_analysis_docs/Models/densenet/pt_densenet_201.md index 7f1484e71..770018026 100644 --- a/model_analysis_docs/Models/densenet/pt_densenet_201.md +++ b/model_analysis_docs/Models/densenet/pt_densenet_201.md @@ -5802,21 +5802,21 @@ Matmul Operand(type=Activation, shape=(1, 1920), dtype=float32)
X
Operand(type=Activation, shape=(1920, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/distilbert/pt_distilbert_masked_lm.md b/model_analysis_docs/Models/distilbert/pt_distilbert_masked_lm.md index d4b5ac09c..465457f3c 100644 --- a/model_analysis_docs/Models/distilbert/pt_distilbert_masked_lm.md +++ b/model_analysis_docs/Models/distilbert/pt_distilbert_masked_lm.md @@ -108,6 +108,26 @@ [FORGE][mlir generation failure] RuntimeError Generated MLIR module failed verification + + Cast + Operand(type=Activation, shape=(1, 128, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(512, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Cast Operand(type=Activation, shape=(1, 128), dtype=int64) @@ -148,6 +168,16 @@ + + Cast + Operand(type=Parameter, shape=(119547, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Clip Operand(type=Activation, shape=(1, 12, 128, 128), dtype=float32) @@ -160,23 +190,23 @@ Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 768), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + � + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(119547, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(119547, 768), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Gelu @@ -236,7 +266,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -252,11 +282,11 @@ Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -282,11 +312,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -302,11 +332,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/distilbert/pt_distilbert_question_answering.md b/model_analysis_docs/Models/distilbert/pt_distilbert_question_answering.md index 4ac6963fb..c4d015201 100644 --- a/model_analysis_docs/Models/distilbert/pt_distilbert_question_answering.md +++ b/model_analysis_docs/Models/distilbert/pt_distilbert_question_answering.md @@ -108,6 +108,36 @@ [FORGE][mlir generation failure] RuntimeError Generated MLIR module failed verification + + Cast + Operand(type=Parameter, shape=(512, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(28996, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 384, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Cast Operand(type=Activation, shape=(1, 384), dtype=int64) @@ -160,23 +190,23 @@ Embedding - Operand(type=Activation, shape=(1, 384), dtype=int64)
X
Operand(type=Parameter, shape=(28996, 768), dtype=float32) + Operand(type=Activation, shape=(1, 384), dtype=int64)
X
Operand(type=Activation, shape=(28996, 768), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Embedding - Operand(type=Activation, shape=(1, 384), dtype=int64)
X
Operand(type=Parameter, shape=(512, 768), dtype=float32) + Operand(type=Activation, shape=(1, 384), dtype=int64)
X
Operand(type=Activation, shape=(512, 768), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + � + Gelu @@ -226,7 +256,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -282,11 +312,11 @@ Matmul Operand(type=Activation, shape=(384, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -322,21 +352,21 @@ Matmul Operand(type=Activation, shape=(1, 384, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(384, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 1), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/distilbert/pt_distilbert_sequence_classification.md b/model_analysis_docs/Models/distilbert/pt_distilbert_sequence_classification.md index e0464f3be..98a75aba8 100644 --- a/model_analysis_docs/Models/distilbert/pt_distilbert_sequence_classification.md +++ b/model_analysis_docs/Models/distilbert/pt_distilbert_sequence_classification.md @@ -118,6 +118,36 @@ [FORGE][mlir generation failure] RuntimeError Generated MLIR module failed verification + + Cast + Operand(type=Parameter, shape=(30522, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 128, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(512, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Cast Operand(type=Activation, shape=(1, 128), dtype=int64) @@ -170,23 +200,23 @@ Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30522, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30522, 768), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 768), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + � + Gelu @@ -246,7 +276,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -272,21 +302,21 @@ Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -322,11 +352,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/distilbert/pt_distilbert_token_classification.md b/model_analysis_docs/Models/distilbert/pt_distilbert_token_classification.md index 4f72a3d17..d8b54e255 100644 --- a/model_analysis_docs/Models/distilbert/pt_distilbert_token_classification.md +++ b/model_analysis_docs/Models/distilbert/pt_distilbert_token_classification.md @@ -108,6 +108,26 @@ [FORGE][mlir generation failure] RuntimeError Generated MLIR module failed verification + + Cast + Operand(type=Activation, shape=(1, 128, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(512, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Cast Operand(type=Activation, shape=(1, 128), dtype=int64) @@ -148,6 +168,16 @@ + + Cast + Operand(type=Parameter, shape=(119547, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Clip Operand(type=Activation, shape=(1, 12, 128, 128), dtype=float32) @@ -160,23 +190,23 @@ Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 768), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(119547, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(119547, 768), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Gelu @@ -226,7 +256,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -242,11 +272,11 @@ Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -282,11 +312,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/dla/pt_dla102.md b/model_analysis_docs/Models/dla/pt_dla102.md index c8cc9ab07..188186c7a 100644 --- a/model_analysis_docs/Models/dla/pt_dla102.md +++ b/model_analysis_docs/Models/dla/pt_dla102.md @@ -1122,11 +1122,11 @@ Add Operand(type=Constant, name=level4.tree2.tree1.tree2.tree2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_241838, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1162,11 +1162,11 @@ Add Operand(type=Constant, name=level4.tree2.tree2.tree1.tree1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_253838, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1743,40 +1743,40 @@ Operand(type=Activation, shape=(1, 32, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/dla/pt_dla102x.md b/model_analysis_docs/Models/dla/pt_dla102x.md index e1e4288a7..0b53288a1 100644 --- a/model_analysis_docs/Models/dla/pt_dla102x.md +++ b/model_analysis_docs/Models/dla/pt_dla102x.md @@ -1092,11 +1092,11 @@ Add Operand(type=Constant, name=level4.tree2.tree1.tree2.tree2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_241838, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1132,11 +1132,11 @@ Add Operand(type=Constant, name=level4.tree2.tree2.tree1.tree1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_253838, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1713,40 +1713,40 @@ Operand(type=Activation, shape=(1, 32, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/dla/pt_dla102x2.md b/model_analysis_docs/Models/dla/pt_dla102x2.md index c1482f524..8f98d949c 100644 --- a/model_analysis_docs/Models/dla/pt_dla102x2.md +++ b/model_analysis_docs/Models/dla/pt_dla102x2.md @@ -1122,11 +1122,11 @@ Add Operand(type=Constant, name=level4.tree2.tree1.tree2.tree2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_241838, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1162,11 +1162,11 @@ Add Operand(type=Constant, name=level4.tree2.tree2.tree1.tree1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_253838, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1773,40 +1773,40 @@ Operand(type=Activation, shape=(1, 32, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/dla/pt_dla169.md b/model_analysis_docs/Models/dla/pt_dla169.md index 8641b20f5..780205767 100644 --- a/model_analysis_docs/Models/dla/pt_dla169.md +++ b/model_analysis_docs/Models/dla/pt_dla169.md @@ -1462,11 +1462,11 @@ Add Operand(type=Constant, name=level4.tree2.tree1.tree1.tree2.tree1.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3401342, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1532,11 +1532,11 @@ Add Operand(type=Constant, name=level4.tree2.tree1.tree2.tree1.tree1.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3611342, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1702,11 +1702,11 @@ Add Operand(type=Constant, name=level4.tree2.tree2.tree1.tree1.tree2.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4121342, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1742,11 +1742,11 @@ Add Operand(type=Constant, name=level4.tree2.tree2.tree1.tree2.tree1.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4241342, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1772,11 +1772,11 @@ Add Operand(type=Constant, name=level4.tree2.tree2.tree1.tree2.tree2.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4331342, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1812,11 +1812,11 @@ Add Operand(type=Constant, name=level4.tree2.tree2.tree2.tree1.tree1.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4451342, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2413,40 +2413,40 @@ Operand(type=Activation, shape=(1, 32, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/dla/pt_dla34.md b/model_analysis_docs/Models/dla/pt_dla34.md index 536afef52..b2c4f2227 100644 --- a/model_analysis_docs/Models/dla/pt_dla34.md +++ b/model_analysis_docs/Models/dla/pt_dla34.md @@ -853,40 +853,40 @@ Operand(type=Activation, shape=(1, 32, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 256, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/dla/pt_dla46_c.md b/model_analysis_docs/Models/dla/pt_dla46_c.md index ab90c3136..4b36202b7 100644 --- a/model_analysis_docs/Models/dla/pt_dla46_c.md +++ b/model_analysis_docs/Models/dla/pt_dla46_c.md @@ -1063,40 +1063,40 @@ Operand(type=Activation, shape=(1, 32, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 128, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/dla/pt_dla46x_c.md b/model_analysis_docs/Models/dla/pt_dla46x_c.md index 6538aebe1..353bfda0d 100644 --- a/model_analysis_docs/Models/dla/pt_dla46x_c.md +++ b/model_analysis_docs/Models/dla/pt_dla46x_c.md @@ -1043,40 +1043,40 @@ Operand(type=Activation, shape=(1, 32, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 128, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/dla/pt_dla60.md b/model_analysis_docs/Models/dla/pt_dla60.md index 527310d13..f74a06613 100644 --- a/model_analysis_docs/Models/dla/pt_dla60.md +++ b/model_analysis_docs/Models/dla/pt_dla60.md @@ -1283,40 +1283,40 @@ Operand(type=Activation, shape=(1, 32, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/dla/pt_dla60x.md b/model_analysis_docs/Models/dla/pt_dla60x.md index fd752e4f1..da8b264d4 100644 --- a/model_analysis_docs/Models/dla/pt_dla60x.md +++ b/model_analysis_docs/Models/dla/pt_dla60x.md @@ -1253,40 +1253,40 @@ Operand(type=Activation, shape=(1, 32, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/dla/pt_dla60x_c.md b/model_analysis_docs/Models/dla/pt_dla60x_c.md index 847ea3892..436f1e0a6 100644 --- a/model_analysis_docs/Models/dla/pt_dla60x_c.md +++ b/model_analysis_docs/Models/dla/pt_dla60x_c.md @@ -1203,40 +1203,40 @@ Operand(type=Activation, shape=(1, 32, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 128, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/dpr/pt_dpr_ctx_encoder_multiset_base.md b/model_analysis_docs/Models/dpr/pt_dpr_ctx_encoder_multiset_base.md index b9048d86a..2e0ce2516 100644 --- a/model_analysis_docs/Models/dpr/pt_dpr_ctx_encoder_multiset_base.md +++ b/model_analysis_docs/Models/dpr/pt_dpr_ctx_encoder_multiset_base.md @@ -69,34 +69,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30522, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(30522, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 128, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(2, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(512, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30522, 768), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 768), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 768), dtype=bfloat16) + + + + + � + Gelu @@ -136,7 +176,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -162,11 +202,11 @@ Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -202,11 +242,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/dpr/pt_dpr_ctx_encoder_single_nq_base.md b/model_analysis_docs/Models/dpr/pt_dpr_ctx_encoder_single_nq_base.md index b9048d86a..2e0ce2516 100644 --- a/model_analysis_docs/Models/dpr/pt_dpr_ctx_encoder_single_nq_base.md +++ b/model_analysis_docs/Models/dpr/pt_dpr_ctx_encoder_single_nq_base.md @@ -69,34 +69,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30522, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(30522, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 128, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(2, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(512, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30522, 768), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 768), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 768), dtype=bfloat16) + + + + + � + Gelu @@ -136,7 +176,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -162,11 +202,11 @@ Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -202,11 +242,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/dpr/pt_dpr_question_encoder_multiset_base.md b/model_analysis_docs/Models/dpr/pt_dpr_question_encoder_multiset_base.md index b9048d86a..2e0ce2516 100644 --- a/model_analysis_docs/Models/dpr/pt_dpr_question_encoder_multiset_base.md +++ b/model_analysis_docs/Models/dpr/pt_dpr_question_encoder_multiset_base.md @@ -69,34 +69,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30522, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(30522, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 128, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(2, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(512, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30522, 768), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 768), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 768), dtype=bfloat16) + + + + + � + Gelu @@ -136,7 +176,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -162,11 +202,11 @@ Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -202,11 +242,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/dpr/pt_dpr_question_encoder_single_nq_base.md b/model_analysis_docs/Models/dpr/pt_dpr_question_encoder_single_nq_base.md index b9048d86a..2e0ce2516 100644 --- a/model_analysis_docs/Models/dpr/pt_dpr_question_encoder_single_nq_base.md +++ b/model_analysis_docs/Models/dpr/pt_dpr_question_encoder_single_nq_base.md @@ -69,34 +69,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30522, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(30522, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 128, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(2, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(512, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30522, 768), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 768), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 768), dtype=bfloat16) + + + + + � + Gelu @@ -136,7 +176,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -162,11 +202,11 @@ Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -202,11 +242,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/dpr/pt_dpr_reader_multiset_base.md b/model_analysis_docs/Models/dpr/pt_dpr_reader_multiset_base.md index ff39578ed..ae22248e5 100644 --- a/model_analysis_docs/Models/dpr/pt_dpr_reader_multiset_base.md +++ b/model_analysis_docs/Models/dpr/pt_dpr_reader_multiset_base.md @@ -89,34 +89,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30522, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(30522, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 128, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(2, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(512, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30522, 768), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 768), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 768), dtype=bfloat16) + + + + + � + Gelu @@ -156,7 +196,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -166,7 +206,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -232,11 +272,11 @@ Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -272,11 +312,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -292,11 +332,11 @@ Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 1), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/dpr/pt_dpr_reader_single_nq_base.md b/model_analysis_docs/Models/dpr/pt_dpr_reader_single_nq_base.md index ff39578ed..ae22248e5 100644 --- a/model_analysis_docs/Models/dpr/pt_dpr_reader_single_nq_base.md +++ b/model_analysis_docs/Models/dpr/pt_dpr_reader_single_nq_base.md @@ -89,34 +89,74 @@ - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30522, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(30522, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 128, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(2, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(2, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(512, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30522, 768), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(2, 768), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 768), dtype=bfloat16) + + + + + � + Gelu @@ -156,7 +196,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -166,7 +206,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -232,11 +272,11 @@ Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -272,11 +312,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -292,11 +332,11 @@ Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 1), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/efficientnet/pt_efficientnet_b0_timm.md b/model_analysis_docs/Models/efficientnet/pt_efficientnet_b0_timm.md index 4233c2ee1..5027df6f0 100644 --- a/model_analysis_docs/Models/efficientnet/pt_efficientnet_b0_timm.md +++ b/model_analysis_docs/Models/efficientnet/pt_efficientnet_b0_timm.md @@ -1522,11 +1522,11 @@ Matmul Operand(type=Activation, shape=(1, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3104,9 +3104,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3124,9 +3124,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3144,9 +3144,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3164,9 +3164,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3184,9 +3184,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3204,9 +3204,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3224,9 +3224,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3244,9 +3244,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3264,9 +3264,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3284,9 +3284,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg diff --git a/model_analysis_docs/Models/efficientnet/pt_efficientnet_b0_torchvision.md b/model_analysis_docs/Models/efficientnet/pt_efficientnet_b0_torchvision.md index 5b8051d68..f1a2fae90 100644 --- a/model_analysis_docs/Models/efficientnet/pt_efficientnet_b0_torchvision.md +++ b/model_analysis_docs/Models/efficientnet/pt_efficientnet_b0_torchvision.md @@ -1632,11 +1632,11 @@ Matmul Operand(type=Activation, shape=(1, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/efficientnet/pt_efficientnet_b4_timm.md b/model_analysis_docs/Models/efficientnet/pt_efficientnet_b4_timm.md index facac6ceb..7726b826f 100644 --- a/model_analysis_docs/Models/efficientnet/pt_efficientnet_b4_timm.md +++ b/model_analysis_docs/Models/efficientnet/pt_efficientnet_b4_timm.md @@ -2152,11 +2152,11 @@ Matmul Operand(type=Activation, shape=(1, 1792), dtype=float32)
X
Operand(type=Activation, shape=(1792, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -4304,9 +4304,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4324,9 +4324,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4344,9 +4344,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4364,9 +4364,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4384,9 +4384,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4404,9 +4404,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4424,9 +4424,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4444,9 +4444,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4464,9 +4464,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4484,9 +4484,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4504,9 +4504,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4524,9 +4524,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg diff --git a/model_analysis_docs/Models/efficientnet/pt_efficientnet_b4_torchvision.md b/model_analysis_docs/Models/efficientnet/pt_efficientnet_b4_torchvision.md index 212636582..92b884d47 100644 --- a/model_analysis_docs/Models/efficientnet/pt_efficientnet_b4_torchvision.md +++ b/model_analysis_docs/Models/efficientnet/pt_efficientnet_b4_torchvision.md @@ -2282,11 +2282,11 @@ Matmul Operand(type=Activation, shape=(1, 1792), dtype=float32)
X
Operand(type=Activation, shape=(1792, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/falcon/pt_falcon.md b/model_analysis_docs/Models/falcon/pt_falcon.md index defa01094..acfd60b0b 100644 --- a/model_analysis_docs/Models/falcon/pt_falcon.md +++ b/model_analysis_docs/Models/falcon/pt_falcon.md @@ -58,6 +58,26 @@ + + Cast + Operand(type=Parameter, shape=(65024, 4544), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 6, 4544), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 6, 32), dtype=float32)
X
Operand(type=Activation, shape=(1, 6, 32), dtype=float32) @@ -100,13 +120,13 @@ Embedding - Operand(type=Activation, shape=(1, 6), dtype=int64)
X
Operand(type=Parameter, shape=(65024, 4544), dtype=float32) + Operand(type=Activation, shape=(1, 6), dtype=int64)
X
Operand(type=Activation, shape=(65024, 4544), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Gelu @@ -222,31 +242,31 @@ Matmul Operand(type=Activation, shape=(6, 4544), dtype=float32)
X
Operand(type=Activation, shape=(4544, 18176), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 6, 18176), dtype=float32)
X
Operand(type=Activation, shape=(18176, 4544), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(6, 4544), dtype=float32)
X
Operand(type=Activation, shape=(4544, 4672), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -282,21 +302,21 @@ Matmul Operand(type=Activation, shape=(6, 4544), dtype=float32)
X
Operand(type=Activation, shape=(4544, 4544), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 6, 4544), dtype=float32)
X
Operand(type=Activation, shape=(4544, 65024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/fpn/pt_fpn.md b/model_analysis_docs/Models/fpn/pt_fpn.md index b3fe394b0..b6b7ba5cf 100644 --- a/model_analysis_docs/Models/fpn/pt_fpn.md +++ b/model_analysis_docs/Models/fpn/pt_fpn.md @@ -202,11 +202,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 256, 8, 8), dtype=float32) kernel_size : 1
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/fuyu_8b/pt_fuyu_8b.md b/model_analysis_docs/Models/fuyu_8b/pt_fuyu_8b.md index abb11bc69..96c3d35b9 100644 --- a/model_analysis_docs/Models/fuyu_8b/pt_fuyu_8b.md +++ b/model_analysis_docs/Models/fuyu_8b/pt_fuyu_8b.md @@ -232,11 +232,11 @@ Matmul Operand(type=Activation, shape=(1, 334, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 12288), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -272,31 +272,31 @@ Matmul Operand(type=Activation, shape=(334, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 334, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 16384), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 334, 16384), dtype=float32)
X
Operand(type=Activation, shape=(16384, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/gemma_2b/pt_gemma_2b.md b/model_analysis_docs/Models/gemma_2b/pt_gemma_2b.md new file mode 100644 index 000000000..e78fe84d0 --- /dev/null +++ b/model_analysis_docs/Models/gemma_2b/pt_gemma_2b.md @@ -0,0 +1,782 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AddOperand(type=Activation, shape=(1, 7, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32)
AddOperand(type=Parameter, shape=(2048,), dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32)
AddOperand(type=Activation, shape=(1, 8, 7, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 7, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 1, 7, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 7, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 8, 7, 7), dtype=float32)
X
Operand(type=Constant, name=const_70, dtype=float32)
AddOperand(type=Activation, shape=(1, 7, 2048), dtype=float32)
X
Operand(type=Activation, shape=(1, 7, 2048), dtype=float32)
CastOperand(type=Parameter, shape=(256000, 2048), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(1, 7, 2048), dtype=bfloat16)dtype : torch.float32
ConcatenateOperand(type=Activation, shape=(1, 7, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 7, 128), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 8, 7, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 7, 128), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 1, 7, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 7, 128), dtype=float32)
axis : -1
CosineOperand(type=Activation, shape=(1, 7, 256), dtype=float32)
EmbeddingOperand(type=Activation, shape=(1, 7), dtype=int64)
X
Operand(type=Activation, shape=(256000, 2048), dtype=bfloat16)
GeluOperand(type=Activation, shape=(1, 7, 16384), dtype=float32)approximate : "tanh"
IdentityOperand(type=Activation, shape=(1, 8, 7, 7), dtype=float32)
IndexOperand(type=Activation, shape=(1, 8, 7, 256), dtype=float32)dim : -1
start : 128
stop : 256
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 7, 256), dtype=float32)dim : -1
start : 0
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 1, 7, 256), dtype=float32)dim : -1
start : 128
stop : 256
stride : 1
IndexOperand(type=Activation, shape=(1, 1, 7, 256), dtype=float32)dim : -1
start : 0
stop : 128
stride : 1
MatmulOperand(type=Activation, shape=(7, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 128, 1), dtype=float32)
X
Operand(type=Constant, name=const_30, dtype=float32)
MatmulOperand(type=Activation, shape=(7, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 256), dtype=float32)
MatmulOperand(type=Activation, shape=(8, 7, 256), dtype=float32)
X
Operand(type=Activation, shape=(8, 256, 7), dtype=float32)
MatmulOperand(type=Activation, shape=(8, 7, 7), dtype=float32)
X
Operand(type=Activation, shape=(8, 7, 256), dtype=float32)
MatmulOperand(type=Activation, shape=(7, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 16384), dtype=float32)
MatmulOperand(type=Activation, shape=(1, 7, 16384), dtype=float32)
X
Operand(type=Activation, shape=(16384, 2048), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 7, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 256000), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 7, 2048), dtype=float32)
X
Operand(type=Constant, name=const_00, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 7, 2048), dtype=float32)
X
Operand(type=Activation, shape=(1, 7, 2048), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 7, 2048), dtype=float32)
X
Operand(type=Activation, shape=(1, 7, 1), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 7, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048,), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 7, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 7, 256), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 7, 128), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 1, 7, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 7, 256), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 1, 7, 128), dtype=float32)
X
Operand(type=Constant, name=const_50, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 7, 7), dtype=float32)
X
Operand(type=Constant, name=const_60, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 7, 16384), dtype=float32)
X
Operand(type=Activation, shape=(1, 7, 16384), dtype=float32)
ReciprocalOperand(type=Activation, shape=(1, 7, 1), dtype=float32)
ReduceAvgOperand(type=Activation, shape=(1, 7, 2048), dtype=float32)dim : -1
keep_dim : True
RepeatInterleaveOperand(type=Activation, shape=(1, 128, 1), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 128, 1), dtype=float32)repeats : 1
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 1, 1, 7, 256), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 1, 1, 7, 256), dtype=float32)repeats : 1
dim : 1
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 1, 1, 7, 256), dtype=float32)repeats : 8
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(1, 7, 2048), dtype=float32)shape : (7, 2048)
ReshapeOperand(type=Activation, shape=(7, 2048), dtype=float32)shape : (1, 7, 8, 256)
ReshapeOperand(type=Activation, shape=(7, 2048), dtype=float32)shape : (1, 7, 2048)
ReshapeOperand(type=Activation, shape=(1, 8, 7, 256), dtype=float32)shape : (8, 7, 256)
ReshapeOperand(type=Activation, shape=(7, 256), dtype=float32)shape : (1, 7, 1, 256)
ReshapeOperand(type=Activation, shape=(1, 1, 8, 7, 256), dtype=float32)shape : (8, 7, 256)
ReshapeOperand(type=Activation, shape=(1, 1, 8, 7, 256), dtype=float32)shape : (1, 8, 7, 256)
ReshapeOperand(type=Activation, shape=(8, 7, 7), dtype=float32)shape : (1, 8, 7, 7)
ReshapeOperand(type=Activation, shape=(1, 8, 7, 7), dtype=float32)shape : (8, 7, 7)
ReshapeOperand(type=Activation, shape=(1, 8, 256, 7), dtype=float32)shape : (8, 256, 7)
ReshapeOperand(type=Activation, shape=(8, 7, 256), dtype=float32)shape : (1, 8, 7, 256)
ReshapeOperand(type=Activation, shape=(1, 7, 8, 256), dtype=float32)shape : (7, 2048)
ReshapeOperand(type=Activation, shape=(7, 16384), dtype=float32)shape : (1, 7, 16384)
SineOperand(type=Activation, shape=(1, 7, 256), dtype=float32)
SoftmaxOperand(type=Activation, shape=(1, 8, 7, 7), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(1, 7, 1), dtype=float32)
TransposeOperand(type=Parameter, shape=(2048, 2048), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 7, 8, 256), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(1, 128, 7), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(256, 2048), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 7, 1, 256), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(8, 7, 256), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 8, 7, 256), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 8, 7, 256), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(8, 256, 7), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(16384, 2048), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(2048, 16384), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(256000, 2048), dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Constant, name=model.layers.0.self_attn.rotary_emb.inv_freq, dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(1, 128), dtype=float32)dim : 2
UnsqueezeOperand(type=Activation, shape=(1, 7, 256), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 1, 7, 256), dtype=float32)dim : 2
diff --git a/model_analysis_docs/Models/ghostnet/pt_ghostnet_100.md b/model_analysis_docs/Models/ghostnet/pt_ghostnet_100.md index 11d29806e..686ca4ef4 100644 --- a/model_analysis_docs/Models/ghostnet/pt_ghostnet_100.md +++ b/model_analysis_docs/Models/ghostnet/pt_ghostnet_100.md @@ -672,11 +672,11 @@ Add Operand(type=Activation, shape=(1, 72, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_57680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -802,11 +802,11 @@ Add Operand(type=Activation, shape=(1, 120, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_77680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1112,11 +1112,11 @@ Add Operand(type=Activation, shape=(1, 480, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_148680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1202,11 +1202,11 @@ Add Operand(type=Activation, shape=(1, 672, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_168680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1412,11 +1412,11 @@ Add Operand(type=Activation, shape=(1, 960, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_217680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2392,11 +2392,11 @@ Matmul Operand(type=Activation, shape=(1, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3082,11 +3082,11 @@ Multiply Operand(type=Constant, name=blocks.1.0.ghost2.primary_conv.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_26680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3132,11 +3132,11 @@ Multiply Operand(type=Constant, name=blocks.1.0.shortcut.3.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_35680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3292,11 +3292,11 @@ Multiply Operand(type=Activation, shape=(1, 72, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_58680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3392,11 +3392,11 @@ Multiply Operand(type=Constant, name=blocks.3.0.shortcut.3.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_70680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3462,11 +3462,11 @@ Multiply Operand(type=Activation, shape=(1, 120, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_78680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3582,11 +3582,11 @@ Multiply Operand(type=Constant, name=blocks.5.0.ghost2.primary_conv.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_96680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3612,11 +3612,11 @@ Multiply Operand(type=Constant, name=blocks.5.0.shortcut.3.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_105680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3842,11 +3842,11 @@ Multiply Operand(type=Activation, shape=(1, 480, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_149680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3892,11 +3892,11 @@ Multiply Operand(type=Constant, name=blocks.6.3.shortcut.3.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_161680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3922,11 +3922,11 @@ Multiply Operand(type=Activation, shape=(1, 672, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_169680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -4042,11 +4042,11 @@ Multiply Operand(type=Constant, name=blocks.7.0.shortcut.3.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_198680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -4122,11 +4122,11 @@ Multiply Operand(type=Activation, shape=(1, 960, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_218680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -4474,9 +4474,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4494,9 +4494,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4514,9 +4514,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4534,9 +4534,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4554,9 +4554,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -4574,9 +4574,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg diff --git a/model_analysis_docs/Models/googlenet/pt_googlenet.md b/model_analysis_docs/Models/googlenet/pt_googlenet.md index 9ab25053b..db08466bc 100644 --- a/model_analysis_docs/Models/googlenet/pt_googlenet.md +++ b/model_analysis_docs/Models/googlenet/pt_googlenet.md @@ -1642,11 +1642,11 @@ Conv2d Operand(type=Activation, shape=(1, 832, 7, 7), dtype=float32)
X
Operand(type=Activation, shape=(448, 832, 1, 1), dtype=float32) stride : [1, 1]
padding : [0, 0, 0, 0]
dilation : 1
groups : 1
channel_last : 0 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Conv2d @@ -1672,11 +1672,11 @@ Conv2d Operand(type=Activation, shape=(1, 832, 7, 7), dtype=float32)
X
Operand(type=Activation, shape=(624, 832, 1, 1), dtype=float32) stride : [1, 1]
padding : [0, 0, 0, 0]
dilation : 1
groups : 1
channel_last : 0 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Conv2d @@ -2012,111 +2012,111 @@ Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][ttnn.reshape] RuntimeError tt-metal/ttnn/cpp/ttnn/tensor/tensor_utils.cpp new_volume == old_volume Invalid arguments to reshape MaxPool2d Operand(type=Activation, shape=(1, 256, 28, 28), dtype=float32) kernel_size : 3
stride : 1
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 3
stride : 1
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 192, 56, 56), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][ttnn.reshape] RuntimeError tt-metal/ttnn/cpp/ttnn/tensor/tensor_utils.cpp new_volume == old_volume Invalid arguments to reshape MaxPool2d Operand(type=Activation, shape=(1, 192, 28, 28), dtype=float32) kernel_size : 3
stride : 1
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 480, 28, 28), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 480, 14, 14), dtype=float32) kernel_size : 3
stride : 1
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 528, 14, 14), dtype=float32) kernel_size : 3
stride : 1
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 832, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 832, 7, 7), dtype=float32) kernel_size : 3
stride : 1
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/gpt2/pt_gpt2_generation.md b/model_analysis_docs/Models/gpt2/pt_gpt2_generation.md index ff8fef465..8778d8ad3 100644 --- a/model_analysis_docs/Models/gpt2/pt_gpt2_generation.md +++ b/model_analysis_docs/Models/gpt2/pt_gpt2_generation.md @@ -89,24 +89,54 @@ [MLIR][MLIR runtime ttnn ] tt::exception tt-mlir/runtime/lib/ttnn/runtime.cpp Unsupported data type - Embedding - Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Parameter, shape=(50257, 768), dtype=float32) - + Cast + Operand(type=Parameter, shape=(50257, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Constant, name=const_00, dtype=int64)
X
Operand(type=Parameter, shape=(1024, 768), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 256, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(1024, 768), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ - ❌ + ✅ + + + + + Embedding + Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Activation, shape=(50257, 768), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Constant, name=const_00, dtype=int64)
X
Operand(type=Activation, shape=(1024, 768), dtype=bfloat16) + + + + + � - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Gelu @@ -202,11 +232,11 @@ Index Operand(type=Constant, name=model.transformer.h.0.attn.bias, dtype=uint1) dim : -2
start : 0
stop : 256
stride : 1 + ❌ + ❌ + ❌ - - - � - + [FORGE][Runtime Datatype Unsupported] RuntimeError Unhandled dtype Bool Index @@ -232,11 +262,11 @@ Matmul Operand(type=Activation, shape=(256, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -582,11 +612,11 @@ Where Operand(type=Activation, shape=(1, 1, 256, 256), dtype=uint1)
X
Operand(type=Constant, name=const_20, dtype=float32)
X
Operand(type=Constant, name=const_30, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model diff --git a/model_analysis_docs/Models/gptneo/pt_gpt_neo_125M_causal_lm.md b/model_analysis_docs/Models/gptneo/pt_gpt_neo_125M_causal_lm.md index 68660bb4a..225a57873 100644 --- a/model_analysis_docs/Models/gptneo/pt_gpt_neo_125M_causal_lm.md +++ b/model_analysis_docs/Models/gptneo/pt_gpt_neo_125M_causal_lm.md @@ -79,24 +79,54 @@ [MLIR][MLIR runtime ttnn ] tt::exception tt-mlir/runtime/lib/ttnn/runtime.cpp Unsupported data type - Embedding - Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Parameter, shape=(50257, 768), dtype=float32) - + Cast + Operand(type=Parameter, shape=(50257, 768), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 - Embedding - Operand(type=Constant, name=const_00, dtype=int64)
X
Operand(type=Parameter, shape=(2048, 768), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 256, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2048, 768), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ - ❌ + ✅ + + + + + Embedding + Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Activation, shape=(50257, 768), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Constant, name=const_00, dtype=int64)
X
Operand(type=Activation, shape=(2048, 768), dtype=bfloat16) + + + + + � - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Gelu @@ -132,11 +162,11 @@ Index Operand(type=Constant, name=model.transformer.h.0.attn.attention.bias, dtype=uint1) dim : -2
start : 0
stop : 256
stride : 1 + ❌ + ❌ + ❌ - - - � - + [FORGE][Runtime Datatype Unsupported] RuntimeError Unhandled dtype Bool Index @@ -152,11 +182,11 @@ Index Operand(type=Constant, name=model.transformer.h.1.attn.attention.bias, dtype=uint1) dim : -2
start : 0
stop : 256
stride : 1 + ❌ + ❌ + ❌ - - - � - + [FORGE][Runtime Datatype Unsupported] RuntimeError Unhandled dtype Bool Layernorm @@ -172,11 +202,11 @@ Matmul Operand(type=Activation, shape=(256, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -222,11 +252,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -432,11 +462,11 @@ Where Operand(type=Activation, shape=(1, 1, 256, 256), dtype=uint1)
X
Operand(type=Constant, name=const_10, dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model diff --git a/model_analysis_docs/Models/gptneo/pt_gpt_neo_1_3B_causal_lm.md b/model_analysis_docs/Models/gptneo/pt_gpt_neo_1_3B_causal_lm.md index 709cb2570..3a80822b1 100644 --- a/model_analysis_docs/Models/gptneo/pt_gpt_neo_1_3B_causal_lm.md +++ b/model_analysis_docs/Models/gptneo/pt_gpt_neo_1_3B_causal_lm.md @@ -79,24 +79,54 @@ [MLIR][MLIR runtime ttnn ] tt::exception tt-mlir/runtime/lib/ttnn/runtime.cpp Unsupported data type - Embedding - Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Parameter, shape=(50257, 2048), dtype=float32) - + Cast + Operand(type=Parameter, shape=(50257, 2048), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 - Embedding - Operand(type=Constant, name=const_00, dtype=int64)
X
Operand(type=Parameter, shape=(2048, 2048), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 256, 2048), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2048, 2048), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 + + + + Embedding + Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Activation, shape=(50257, 2048), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Constant, name=const_00, dtype=int64)
X
Operand(type=Activation, shape=(2048, 2048), dtype=bfloat16) + + + + + � + Gelu @@ -132,11 +162,11 @@ Index Operand(type=Constant, name=model.transformer.h.0.attn.attention.bias, dtype=uint1) dim : -2
start : 0
stop : 256
stride : 1 + ❌ + ❌ + ❌ - - - � - + [FORGE][Runtime Datatype Unsupported] RuntimeError Unhandled dtype Bool Index @@ -152,11 +182,11 @@ Index Operand(type=Constant, name=model.transformer.h.1.attn.attention.bias, dtype=uint1) dim : -2
start : 0
stop : 256
stride : 1 + ❌ + ❌ + ❌ - - - � - + [FORGE][Runtime Datatype Unsupported] RuntimeError Unhandled dtype Bool Layernorm @@ -172,11 +202,11 @@ Matmul Operand(type=Activation, shape=(256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -212,11 +242,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 8192), dtype=float32)
X
Operand(type=Activation, shape=(8192, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -432,11 +462,11 @@ Where Operand(type=Activation, shape=(1, 1, 256, 256), dtype=uint1)
X
Operand(type=Constant, name=const_10, dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model diff --git a/model_analysis_docs/Models/gptneo/pt_gpt_neo_2_7B_causal_lm.md b/model_analysis_docs/Models/gptneo/pt_gpt_neo_2_7B_causal_lm.md index 294224e0e..2257c4227 100644 --- a/model_analysis_docs/Models/gptneo/pt_gpt_neo_2_7B_causal_lm.md +++ b/model_analysis_docs/Models/gptneo/pt_gpt_neo_2_7B_causal_lm.md @@ -79,24 +79,54 @@ [MLIR][MLIR runtime ttnn ] tt::exception tt-mlir/runtime/lib/ttnn/runtime.cpp Unsupported data type - Embedding - Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Parameter, shape=(50257, 2560), dtype=float32) - + Cast + Operand(type=Parameter, shape=(50257, 2560), dtype=float32) + dtype : torch.bfloat16 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + - Embedding - Operand(type=Constant, name=const_00, dtype=int64)
X
Operand(type=Parameter, shape=(2048, 2560), dtype=float32) + Cast + Operand(type=Activation, shape=(1, 256, 2560), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(2048, 2560), dtype=float32) + dtype : torch.bfloat16 ✅ ✅ - ❌ + ✅ + + + + + Embedding + Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Activation, shape=(50257, 2560), dtype=bfloat16) + + + + + � + + + + Embedding + Operand(type=Constant, name=const_00, dtype=int64)
X
Operand(type=Activation, shape=(2048, 2560), dtype=bfloat16) + + + + + � - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Gelu @@ -132,11 +162,11 @@ Index Operand(type=Constant, name=model.transformer.h.0.attn.attention.bias, dtype=uint1) dim : -2
start : 0
stop : 256
stride : 1 + ❌ + ❌ + ❌ - - - � - + [FORGE][Runtime Datatype Unsupported] RuntimeError Unhandled dtype Bool Index @@ -152,11 +182,11 @@ Index Operand(type=Constant, name=model.transformer.h.1.attn.attention.bias, dtype=uint1) dim : -2
start : 0
stop : 256
stride : 1 + ❌ + ❌ + ❌ - - - � - + [FORGE][Runtime Datatype Unsupported] RuntimeError Unhandled dtype Bool Layernorm @@ -432,11 +462,11 @@ Where Operand(type=Activation, shape=(1, 1, 256, 256), dtype=uint1)
X
Operand(type=Constant, name=const_10, dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnet_w18_small_v1.md b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnet_w18_small_v1.md index ed99fe2a8..e6a66339d 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnet_w18_small_v1.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnet_w18_small_v1.md @@ -1842,11 +1842,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3782,21 +3782,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnet_w18_small_v2.md b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnet_w18_small_v2.md index 0346639ce..352a2b4f8 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnet_w18_small_v2.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnet_w18_small_v2.md @@ -2752,11 +2752,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -5662,21 +5662,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w18.md b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w18.md index 61e30d013..0e98cda19 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w18.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w18.md @@ -4362,11 +4362,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -8882,21 +8882,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w30.md b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w30.md index 2b1ba2d1d..30bf6c987 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w30.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w30.md @@ -4362,11 +4362,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -8862,21 +8862,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w32.md b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w32.md index ab8e7cd37..c21a40fa8 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w32.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w32.md @@ -4202,11 +4202,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -8362,21 +8362,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w40.md b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w40.md index 9f925479e..7157b632d 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w40.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w40.md @@ -4362,11 +4362,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -8882,21 +8882,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w44.md b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w44.md index a568adafd..2810554cb 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w44.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w44.md @@ -4362,11 +4362,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -8822,21 +8822,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w48.md b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w48.md index 20596f42d..47a41ff80 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w48.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w48.md @@ -4362,11 +4362,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -8882,21 +8882,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w64.md b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w64.md index 7f7565233..148126e11 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w64.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_osmr_hrnetv2_w64.md @@ -4252,11 +4252,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -8422,21 +8422,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w18.md b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w18.md index 94369b655..a729e975a 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w18.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w18.md @@ -1382,11 +1382,11 @@ Add Operand(type=Constant, name=stage3.2.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2832602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1442,11 +1442,11 @@ Add Operand(type=Constant, name=stage3.2.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3012602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1522,11 +1522,11 @@ Add Operand(type=Constant, name=stage3.2.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3252602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1712,11 +1712,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3822602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1732,11 +1732,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3882602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1752,11 +1752,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3942602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1792,11 +1792,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4062602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1812,11 +1812,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4122602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1832,11 +1832,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4182602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2002,11 +2002,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4692602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2022,11 +2022,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4752602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2042,11 +2042,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4812602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2062,11 +2062,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4872602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2102,11 +2102,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4992602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2122,11 +2122,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5052602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2142,11 +2142,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5112602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2162,11 +2162,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5172602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2242,11 +2242,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5412602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2262,11 +2262,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5472602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2282,11 +2282,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5532602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2432,11 +2432,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5982602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2452,11 +2452,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6042602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2472,11 +2472,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6102602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2492,11 +2492,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6162602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2612,11 +2612,11 @@ Add Operand(type=Constant, name=stage4.1.branches.1.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6522602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2722,11 +2722,11 @@ Add Operand(type=Constant, name=stage4.1.branches.2.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6852602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2932,11 +2932,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7482602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2952,11 +2952,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7542602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2972,11 +2972,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7602602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3012,11 +3012,11 @@ Add Operand(type=Constant, name=stage4.2.fuse_layers.3.0.1.1.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7722602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3452,11 +3452,11 @@ Add Operand(type=Constant, name=stage4.2.fuse_layers.2.0.1.1.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9042602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3572,11 +3572,11 @@ Add Operand(type=Constant, name=incre_modules.1.0.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9402602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -4362,11 +4362,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -8902,21 +8902,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w18_small.md b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w18_small.md index 02b38b30d..d0918ad8c 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w18_small.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w18_small.md @@ -722,11 +722,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4692602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -742,11 +742,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4752602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -762,11 +762,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4992602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -782,11 +782,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5052602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -832,11 +832,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5412602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1142,11 +1142,11 @@ Add Operand(type=Constant, name=incre_modules.1.0.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9402602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1842,11 +1842,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3802,21 +3802,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w18_small_v2.md b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w18_small_v2.md index b8197b74b..e3168edda 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w18_small_v2.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w18_small_v2.md @@ -1002,11 +1002,11 @@ Add Operand(type=Constant, name=stage3.2.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2832602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1242,11 +1242,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4692602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1262,11 +1262,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4752602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1282,11 +1282,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4992602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1302,11 +1302,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5052602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1352,11 +1352,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5412602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1462,11 +1462,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5982602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1482,11 +1482,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6042602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1982,11 +1982,11 @@ Add Operand(type=Constant, name=incre_modules.1.0.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9402602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2752,11 +2752,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -5682,21 +5682,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w30.md b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w30.md index 41049cef0..07364f111 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w30.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w30.md @@ -1262,11 +1262,11 @@ Add Operand(type=Constant, name=stage3.2.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2832602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1322,11 +1322,11 @@ Add Operand(type=Constant, name=stage3.2.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3012602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1402,11 +1402,11 @@ Add Operand(type=Constant, name=stage3.2.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3252602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1592,11 +1592,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3822602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1612,11 +1612,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3882602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1632,11 +1632,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3942602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1672,11 +1672,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4062602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1692,11 +1692,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4122602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1712,11 +1712,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4182602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1882,11 +1882,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4692602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1902,11 +1902,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4752602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1922,11 +1922,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4812602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1942,11 +1942,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4872602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1982,11 +1982,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4992602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2002,11 +2002,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5052602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2022,11 +2022,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5112602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2042,11 +2042,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5172602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2122,11 +2122,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5412602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2142,11 +2142,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5472602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2162,11 +2162,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5532602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2312,11 +2312,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5982602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2332,11 +2332,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6042602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2352,11 +2352,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6102602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2372,11 +2372,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6162602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2492,11 +2492,11 @@ Add Operand(type=Constant, name=stage4.1.branches.1.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6522602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2602,11 +2602,11 @@ Add Operand(type=Constant, name=stage4.1.branches.2.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6852602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2812,11 +2812,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7482602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2832,11 +2832,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7542602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2852,11 +2852,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7602602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2892,11 +2892,11 @@ Add Operand(type=Constant, name=stage4.2.fuse_layers.3.0.1.1.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7722602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3332,11 +3332,11 @@ Add Operand(type=Constant, name=stage4.2.fuse_layers.2.0.1.1.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9042602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3452,11 +3452,11 @@ Add Operand(type=Constant, name=incre_modules.1.0.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9402602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -4362,11 +4362,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -8882,21 +8882,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w32.md b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w32.md index 7c6cbbaf5..3c49ef5a6 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w32.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w32.md @@ -1282,11 +1282,11 @@ Add Operand(type=Constant, name=stage3.2.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2832602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1342,11 +1342,11 @@ Add Operand(type=Constant, name=stage3.2.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3012602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1422,11 +1422,11 @@ Add Operand(type=Constant, name=stage3.2.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3252602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1612,11 +1612,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3822602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1632,11 +1632,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3882602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1652,11 +1652,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3942602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1692,11 +1692,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4062602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1712,11 +1712,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4122602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1732,11 +1732,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4182602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1902,11 +1902,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4692602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1922,11 +1922,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4752602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1942,11 +1942,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4812602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1962,11 +1962,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4872602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2002,11 +2002,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4992602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2022,11 +2022,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5052602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2042,11 +2042,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5112602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2062,11 +2062,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5172602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2142,11 +2142,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5412602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2162,11 +2162,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5472602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2182,11 +2182,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5532602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2332,11 +2332,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5982602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2352,11 +2352,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6042602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2372,11 +2372,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6102602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2392,11 +2392,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6162602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2512,11 +2512,11 @@ Add Operand(type=Constant, name=stage4.1.branches.1.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6522602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2622,11 +2622,11 @@ Add Operand(type=Constant, name=stage4.1.branches.2.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6852602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2832,11 +2832,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7482602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2852,11 +2852,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7542602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2872,11 +2872,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7602602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2912,11 +2912,11 @@ Add Operand(type=Constant, name=stage4.2.fuse_layers.3.0.1.1.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7722602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3352,11 +3352,11 @@ Add Operand(type=Constant, name=stage4.2.fuse_layers.2.0.1.1.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9042602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3472,11 +3472,11 @@ Add Operand(type=Constant, name=incre_modules.1.0.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9402602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -4202,11 +4202,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -8382,21 +8382,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w40.md b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w40.md index 44736e830..48e68df40 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w40.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w40.md @@ -1362,11 +1362,11 @@ Add Operand(type=Constant, name=stage3.2.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2832602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1422,11 +1422,11 @@ Add Operand(type=Constant, name=stage3.2.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3012602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1502,11 +1502,11 @@ Add Operand(type=Constant, name=stage3.2.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3252602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1692,11 +1692,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3822602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1712,11 +1712,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3882602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1732,11 +1732,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3942602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1772,11 +1772,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4062602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1792,11 +1792,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4122602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1812,11 +1812,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4182602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1982,11 +1982,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4692602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2002,11 +2002,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4752602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2022,11 +2022,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4812602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2042,11 +2042,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4872602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2082,11 +2082,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4992602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2102,11 +2102,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5052602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2122,11 +2122,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5112602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2142,11 +2142,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5172602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2222,11 +2222,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5412602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2242,11 +2242,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5472602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2262,11 +2262,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5532602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2432,11 +2432,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5982602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2452,11 +2452,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6042602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2472,11 +2472,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6102602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2492,11 +2492,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6162602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2612,11 +2612,11 @@ Add Operand(type=Constant, name=stage4.1.branches.1.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6522602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2722,11 +2722,11 @@ Add Operand(type=Constant, name=stage4.1.branches.2.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6852602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2932,11 +2932,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7482602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2952,11 +2952,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7542602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2972,11 +2972,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7602602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3012,11 +3012,11 @@ Add Operand(type=Constant, name=stage4.2.fuse_layers.3.0.1.1.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7722602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3452,11 +3452,11 @@ Add Operand(type=Constant, name=stage4.2.fuse_layers.2.0.1.1.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9042602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3572,11 +3572,11 @@ Add Operand(type=Constant, name=incre_modules.1.0.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9402602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -4362,11 +4362,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -8902,21 +8902,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w44.md b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w44.md index 102eed8ec..6339649e0 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w44.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w44.md @@ -1232,11 +1232,11 @@ Add Operand(type=Constant, name=stage3.2.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2832602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1292,11 +1292,11 @@ Add Operand(type=Constant, name=stage3.2.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3012602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1372,11 +1372,11 @@ Add Operand(type=Constant, name=stage3.2.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3252602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1562,11 +1562,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3822602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1582,11 +1582,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3882602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1602,11 +1602,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3942602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1642,11 +1642,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4062602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1662,11 +1662,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4122602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1682,11 +1682,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4182602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1852,11 +1852,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4692602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1872,11 +1872,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4752602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1892,11 +1892,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4812602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1912,11 +1912,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4872602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1952,11 +1952,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4992602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1972,11 +1972,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5052602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1992,11 +1992,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5112602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2012,11 +2012,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5172602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2092,11 +2092,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5412602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2112,11 +2112,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5472602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2132,11 +2132,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5532602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2282,11 +2282,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5982602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2302,11 +2302,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6042602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2322,11 +2322,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6102602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2342,11 +2342,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6162602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2462,11 +2462,11 @@ Add Operand(type=Constant, name=stage4.1.branches.1.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6522602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2572,11 +2572,11 @@ Add Operand(type=Constant, name=stage4.1.branches.2.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6852602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2782,11 +2782,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7482602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2802,11 +2802,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7542602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2822,11 +2822,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7602602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2862,11 +2862,11 @@ Add Operand(type=Constant, name=stage4.2.fuse_layers.3.0.1.1.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7722602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3302,11 +3302,11 @@ Add Operand(type=Constant, name=stage4.2.fuse_layers.2.0.1.1.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9042602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3422,11 +3422,11 @@ Add Operand(type=Constant, name=incre_modules.1.0.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9402602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -4362,11 +4362,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -8842,21 +8842,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w48.md b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w48.md index 0fc40bb00..6167f4408 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w48.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w48.md @@ -1312,11 +1312,11 @@ Add Operand(type=Constant, name=stage3.2.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2832602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1372,11 +1372,11 @@ Add Operand(type=Constant, name=stage3.2.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3012602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1452,11 +1452,11 @@ Add Operand(type=Constant, name=stage3.2.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3252602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1642,11 +1642,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3822602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1662,11 +1662,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3882602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1682,11 +1682,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3942602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1722,11 +1722,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4062602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1742,11 +1742,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4122602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1762,11 +1762,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4182602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1932,11 +1932,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4692602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1952,11 +1952,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4752602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1972,11 +1972,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4812602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1992,11 +1992,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4872602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2032,11 +2032,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4992602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2052,11 +2052,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5052602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2072,11 +2072,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5112602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2092,11 +2092,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5172602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2172,11 +2172,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5412602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2192,11 +2192,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5472602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2212,11 +2212,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5532602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2362,11 +2362,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5982602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2382,11 +2382,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6042602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2402,11 +2402,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6102602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2422,11 +2422,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6162602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2542,11 +2542,11 @@ Add Operand(type=Constant, name=stage4.1.branches.1.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6522602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2652,11 +2652,11 @@ Add Operand(type=Constant, name=stage4.1.branches.2.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6852602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2862,11 +2862,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7482602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2882,11 +2882,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7542602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2902,11 +2902,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7602602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2942,11 +2942,11 @@ Add Operand(type=Constant, name=stage4.2.fuse_layers.3.0.1.1.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7722602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3382,11 +3382,11 @@ Add Operand(type=Constant, name=stage4.2.fuse_layers.2.0.1.1.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9042602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3502,11 +3502,11 @@ Add Operand(type=Constant, name=incre_modules.1.0.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9402602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -4362,11 +4362,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -8902,21 +8902,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w64.md b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w64.md index 1663ef474..e5de1e06c 100644 --- a/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w64.md +++ b/model_analysis_docs/Models/hrnet/pt_hrnet_timm_hrnet_w64.md @@ -1302,11 +1302,11 @@ Add Operand(type=Constant, name=stage3.2.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2832602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1362,11 +1362,11 @@ Add Operand(type=Constant, name=stage3.2.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3012602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1442,11 +1442,11 @@ Add Operand(type=Constant, name=stage3.2.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3252602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1632,11 +1632,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3822602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1652,11 +1652,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3882602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1672,11 +1672,11 @@ Add Operand(type=Constant, name=stage3.3.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3942602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1712,11 +1712,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4062602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1732,11 +1732,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4122602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1752,11 +1752,11 @@ Add Operand(type=Constant, name=stage3.3.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4182602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1922,11 +1922,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4692602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1942,11 +1942,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4752602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1962,11 +1962,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4812602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1982,11 +1982,11 @@ Add Operand(type=Constant, name=stage4.0.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4872602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2022,11 +2022,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4992602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2042,11 +2042,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5052602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2062,11 +2062,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5112602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2082,11 +2082,11 @@ Add Operand(type=Constant, name=stage4.0.branches.1.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5172602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2162,11 +2162,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5412602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2182,11 +2182,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5472602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2202,11 +2202,11 @@ Add Operand(type=Constant, name=stage4.0.branches.2.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5532602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2352,11 +2352,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.0.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_5982602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2372,11 +2372,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6042602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2392,11 +2392,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6102602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2412,11 +2412,11 @@ Add Operand(type=Constant, name=stage4.1.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6162602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2532,11 +2532,11 @@ Add Operand(type=Constant, name=stage4.1.branches.1.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6522602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2642,11 +2642,11 @@ Add Operand(type=Constant, name=stage4.1.branches.2.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_6852602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2852,11 +2852,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.1.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7482602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2872,11 +2872,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.2.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7542602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2892,11 +2892,11 @@ Add Operand(type=Constant, name=stage4.2.branches.0.3.bn2.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7602602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2932,11 +2932,11 @@ Add Operand(type=Constant, name=stage4.2.fuse_layers.3.0.1.1.running_var, dtype=float32)
X
Operand(type=Constant, name=const_7722602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3372,11 +3372,11 @@ Add Operand(type=Constant, name=stage4.2.fuse_layers.2.0.1.1.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9042602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -3492,11 +3492,11 @@ Add Operand(type=Constant, name=incre_modules.1.0.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_9402602, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -4252,11 +4252,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -8442,21 +8442,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/inception_v4/pt_osmr_inception_v4.md b/model_analysis_docs/Models/inception_v4/pt_osmr_inception_v4.md index 54bcbe418..7588d45e0 100644 --- a/model_analysis_docs/Models/inception_v4/pt_osmr_inception_v4.md +++ b/model_analysis_docs/Models/inception_v4/pt_osmr_inception_v4.md @@ -2212,11 +2212,11 @@ Conv2d Operand(type=Activation, shape=(1, 1024, 17, 17), dtype=float32)
X
Operand(type=Activation, shape=(768, 1024, 1, 1), dtype=float32) stride : [1, 1]
padding : [0, 0, 0, 0]
dilation : 1
groups : 1
channel_last : 0 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Conv2d @@ -2342,11 +2342,11 @@ Conv2d Operand(type=Activation, shape=(1, 1536, 8, 8), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1536, 1, 1), dtype=float32) stride : [1, 1]
padding : [0, 0, 0, 0]
dilation : 1
groups : 1
channel_last : 0 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Conv2d @@ -2512,51 +2512,51 @@ Matmul Operand(type=Activation, shape=(1, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 147, 147), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 192, 71, 71), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 384, 35, 35), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 1024, 17, 17), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/inception_v4/pt_timm_inception_v4.md b/model_analysis_docs/Models/inception_v4/pt_timm_inception_v4.md index 38183c687..b5f22b0b3 100644 --- a/model_analysis_docs/Models/inception_v4/pt_timm_inception_v4.md +++ b/model_analysis_docs/Models/inception_v4/pt_timm_inception_v4.md @@ -2212,11 +2212,11 @@ Conv2d Operand(type=Activation, shape=(1, 1024, 17, 17), dtype=float32)
X
Operand(type=Activation, shape=(768, 1024, 1, 1), dtype=float32) stride : [1, 1]
padding : [0, 0, 0, 0]
dilation : 1
groups : 1
channel_last : 0 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Conv2d @@ -2342,11 +2342,11 @@ Conv2d Operand(type=Activation, shape=(1, 1536, 8, 8), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1536, 1, 1), dtype=float32) stride : [1, 1]
padding : [0, 0, 0, 0]
dilation : 1
groups : 1
channel_last : 0 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Conv2d @@ -2512,51 +2512,51 @@ Matmul Operand(type=Activation, shape=(1, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 147, 147), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 192, 71, 71), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 384, 35, 35), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 1024, 17, 17), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/llama3/pt_Llama_3_1_8B_Instruct_causal_lm.md b/model_analysis_docs/Models/llama3/pt_Llama_3_1_8B_Instruct_causal_lm.md new file mode 100644 index 000000000..1dd6ee52a --- /dev/null +++ b/model_analysis_docs/Models/llama3/pt_Llama_3_1_8B_Instruct_causal_lm.md @@ -0,0 +1,902 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AbsOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 256, 1), dtype=float32)
X
Operand(type=Constant, name=const_00, dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)
AddOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)
AddOperand(type=Constant, name=const_80, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 1, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 4096), dtype=float32)
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=uint1)dtype : torch.float32
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=uint1)dtype : torch.int32
CastOperand(type=Parameter, shape=(128256, 4096), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(1, 256, 4096), dtype=bfloat16)dtype : torch.float32
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)dtype : torch.bool[MLIR][MLIR runtime ttnn ] tt::exception tt-mlir/runtime/lib/ttnn/runtime.cpp Unsupported data type
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=int32)dtype : torch.bool[MLIR][MLIR runtime ttnn ] tt::exception tt-mlir/runtime/lib/ttnn/runtime.cpp Unsupported data type
ClipOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)min : 0.0
max : 1.0
ConcatenateOperand(type=Activation, shape=(1, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
axis : -1
CosineOperand(type=Activation, shape=(1, 256, 128), dtype=float32)
EmbeddingOperand(type=Activation, shape=(1, 256), dtype=int32)
X
Operand(type=Activation, shape=(128256, 4096), dtype=bfloat16)
GreaterOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
X
Operand(type=Constant, name=const_90, dtype=float32)
[TT_METAL][ttnn elementwise binary] RuntimeError BinaryOpType cannot be mapped to BcastOpMath
IdentityOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
IndexOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
MatmulOperand(type=Activation, shape=(256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(1, 64, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32)
MatmulOperand(type=Activation, shape=(256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(32, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(32, 128, 256), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(32, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(32, 256, 128), dtype=float32)
MatmulOperand(type=Activation, shape=(256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 14336), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(1, 256, 14336), dtype=float32)
X
Operand(type=Activation, shape=(14336, 4096), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 128256), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 1), dtype=float32)
MultiplyOperand(type=Parameter, shape=(4096,), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
X
Operand(type=Constant, name=const_30, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32)
MultiplyOperand(type=Constant, name=const_50, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
MultiplyOperand(type=Constant, name=const_100, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 256, 14336), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 14336), dtype=float32)
ReciprocalOperand(type=Activation, shape=(1, 256, 1), dtype=float32)
ReduceAvgOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)dim : -1
keep_dim : True
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 256, 128), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 256, 128), dtype=float32)repeats : 4
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(256, 1024), dtype=float32)shape : (1, 256, 8, 128)
ReshapeOperand(type=Activation, shape=(256, 4096), dtype=float32)shape : (1, 256, 4096)
ReshapeOperand(type=Activation, shape=(256, 4096), dtype=float32)shape : (1, 256, 32, 128)
ReshapeOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)shape : (256, 4096)
ReshapeOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)shape : (32, 256, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 256, 128), dtype=float32)shape : (32, 256, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 256, 128), dtype=float32)shape : (1, 32, 256, 128)
ReshapeOperand(type=Activation, shape=(32, 256, 256), dtype=float32)shape : (1, 32, 256, 256)
ReshapeOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)shape : (32, 256, 256)
ReshapeOperand(type=Activation, shape=(1, 32, 128, 256), dtype=float32)shape : (32, 128, 256)
ReshapeOperand(type=Activation, shape=(32, 256, 128), dtype=float32)shape : (1, 32, 256, 128)
ReshapeOperand(type=Activation, shape=(1, 256, 32, 128), dtype=float32)shape : (256, 4096)
ReshapeOperand(type=Activation, shape=(256, 14336), dtype=float32)shape : (1, 256, 14336)
SigmoidOperand(type=Activation, shape=(1, 256, 14336), dtype=float32)
SineOperand(type=Activation, shape=(1, 256, 128), dtype=float32)
SoftmaxOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(1, 256, 1), dtype=float32)
SubtractOperand(type=Constant, name=const_60, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
SubtractOperand(type=Constant, name=const_70, dtype=int32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=int32)
TransposeOperand(type=Parameter, shape=(1024, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 256, 32, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(1, 64, 256), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 256, 8, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 256, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 128, 256), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(14336, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 14336), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(128256, 4096), dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Activation, shape=(1, 256), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 1, 256), dtype=float32)dim : 2
UnsqueezeOperand(type=Constant, name=model.rotary_emb.inv_freq, dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(1, 64), dtype=float32)dim : 2
UnsqueezeOperand(type=Activation, shape=(1, 256, 128), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)dim : 2
diff --git a/model_analysis_docs/Models/llama3/pt_Llama_3_1_8B_Instruct_seq_cls.md b/model_analysis_docs/Models/llama3/pt_Llama_3_1_8B_Instruct_seq_cls.md new file mode 100644 index 000000000..bc2fef8a6 --- /dev/null +++ b/model_analysis_docs/Models/llama3/pt_Llama_3_1_8B_Instruct_seq_cls.md @@ -0,0 +1,782 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AddOperand(type=Activation, shape=(1, 4, 1), dtype=float32)
X
Operand(type=Constant, name=const_00, dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)
X
Operand(type=Constant, name=const_50, dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)
AddOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)
AddOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 4096), dtype=float32)
AdvIndexOperand(type=Activation, shape=(1, 2), dtype=float32)
X
Operand(type=Constant, name=const_980, dtype=int64)
CastOperand(type=Parameter, shape=(128256, 4096), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(1, 4, 4096), dtype=bfloat16)dtype : torch.float32
ConcatenateOperand(type=Activation, shape=(1, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)
axis : -1
CosineOperand(type=Activation, shape=(1, 4, 128), dtype=float32)
EmbeddingOperand(type=Activation, shape=(1, 4), dtype=int64)
X
Operand(type=Activation, shape=(128256, 4096), dtype=bfloat16)
IdentityOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)
IndexOperand(type=Activation, shape=(1, 4, 2), dtype=float32)dim : -2
start : 3
stop : 4
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
MatmulOperand(type=Activation, shape=(1, 64, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32)
MatmulOperand(type=Activation, shape=(4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(32, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(32, 128, 4), dtype=float32)
MatmulOperand(type=Activation, shape=(32, 4, 4), dtype=float32)
X
Operand(type=Activation, shape=(32, 4, 128), dtype=float32)
MatmulOperand(type=Activation, shape=(4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 14336), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 4, 14336), dtype=float32)
X
Operand(type=Activation, shape=(14336, 4096), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 2), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 1), dtype=float32)
MultiplyOperand(type=Parameter, shape=(4096,), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 4, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 4, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)
X
Operand(type=Constant, name=const_30, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 4, 14336), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 14336), dtype=float32)
ReciprocalOperand(type=Activation, shape=(1, 4, 1), dtype=float32)
ReduceAvgOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)dim : -1
keep_dim : True
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 4, 128), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 4, 128), dtype=float32)repeats : 4
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(32, 4, 4), dtype=float32)shape : (1, 32, 4, 4)
ReshapeOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)shape : (32, 4, 4)
ReshapeOperand(type=Activation, shape=(1, 1, 2), dtype=float32)shape : (1, 2)
ReshapeOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)shape : (4, 4096)
ReshapeOperand(type=Activation, shape=(4, 4096), dtype=float32)shape : (1, 4, 32, 128)
ReshapeOperand(type=Activation, shape=(4, 4096), dtype=float32)shape : (1, 4, 4096)
ReshapeOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)shape : (32, 4, 128)
ReshapeOperand(type=Activation, shape=(4, 1024), dtype=float32)shape : (1, 4, 8, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 4, 128), dtype=float32)shape : (32, 4, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 4, 128), dtype=float32)shape : (1, 32, 4, 128)
ReshapeOperand(type=Activation, shape=(1, 32, 128, 4), dtype=float32)shape : (32, 128, 4)
ReshapeOperand(type=Activation, shape=(32, 4, 128), dtype=float32)shape : (1, 32, 4, 128)
ReshapeOperand(type=Activation, shape=(1, 4, 32, 128), dtype=float32)shape : (4, 4096)
ReshapeOperand(type=Activation, shape=(4, 14336), dtype=float32)shape : (1, 4, 14336)
SigmoidOperand(type=Activation, shape=(1, 4, 14336), dtype=float32)
SineOperand(type=Activation, shape=(1, 4, 128), dtype=float32)
SoftmaxOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(1, 4, 1), dtype=float32)
TransposeOperand(type=Parameter, shape=(1024, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(2, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(14336, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 14336), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 4, 32, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(1, 64, 4), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 4, 8, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 4, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 128, 4), dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Constant, name=model.rotary_emb.inv_freq, dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(1, 64), dtype=float32)dim : 2
UnsqueezeOperand(type=Activation, shape=(1, 4, 128), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)dim : 2
diff --git a/model_analysis_docs/Models/llama3/pt_Llama_3_1_8B_causal_lm.md b/model_analysis_docs/Models/llama3/pt_Llama_3_1_8B_causal_lm.md new file mode 100644 index 000000000..1dd6ee52a --- /dev/null +++ b/model_analysis_docs/Models/llama3/pt_Llama_3_1_8B_causal_lm.md @@ -0,0 +1,902 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AbsOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 256, 1), dtype=float32)
X
Operand(type=Constant, name=const_00, dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)
AddOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)
AddOperand(type=Constant, name=const_80, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 1, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 4096), dtype=float32)
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=uint1)dtype : torch.float32
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=uint1)dtype : torch.int32
CastOperand(type=Parameter, shape=(128256, 4096), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(1, 256, 4096), dtype=bfloat16)dtype : torch.float32
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)dtype : torch.bool[MLIR][MLIR runtime ttnn ] tt::exception tt-mlir/runtime/lib/ttnn/runtime.cpp Unsupported data type
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=int32)dtype : torch.bool[MLIR][MLIR runtime ttnn ] tt::exception tt-mlir/runtime/lib/ttnn/runtime.cpp Unsupported data type
ClipOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)min : 0.0
max : 1.0
ConcatenateOperand(type=Activation, shape=(1, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
axis : -1
CosineOperand(type=Activation, shape=(1, 256, 128), dtype=float32)
EmbeddingOperand(type=Activation, shape=(1, 256), dtype=int32)
X
Operand(type=Activation, shape=(128256, 4096), dtype=bfloat16)
GreaterOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
X
Operand(type=Constant, name=const_90, dtype=float32)
[TT_METAL][ttnn elementwise binary] RuntimeError BinaryOpType cannot be mapped to BcastOpMath
IdentityOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
IndexOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
MatmulOperand(type=Activation, shape=(256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(1, 64, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32)
MatmulOperand(type=Activation, shape=(256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(32, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(32, 128, 256), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(32, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(32, 256, 128), dtype=float32)
MatmulOperand(type=Activation, shape=(256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 14336), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(1, 256, 14336), dtype=float32)
X
Operand(type=Activation, shape=(14336, 4096), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 128256), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 1), dtype=float32)
MultiplyOperand(type=Parameter, shape=(4096,), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
X
Operand(type=Constant, name=const_30, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32)
MultiplyOperand(type=Constant, name=const_50, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
MultiplyOperand(type=Constant, name=const_100, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 256, 14336), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 14336), dtype=float32)
ReciprocalOperand(type=Activation, shape=(1, 256, 1), dtype=float32)
ReduceAvgOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)dim : -1
keep_dim : True
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 256, 128), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 256, 128), dtype=float32)repeats : 4
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(256, 1024), dtype=float32)shape : (1, 256, 8, 128)
ReshapeOperand(type=Activation, shape=(256, 4096), dtype=float32)shape : (1, 256, 4096)
ReshapeOperand(type=Activation, shape=(256, 4096), dtype=float32)shape : (1, 256, 32, 128)
ReshapeOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)shape : (256, 4096)
ReshapeOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)shape : (32, 256, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 256, 128), dtype=float32)shape : (32, 256, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 256, 128), dtype=float32)shape : (1, 32, 256, 128)
ReshapeOperand(type=Activation, shape=(32, 256, 256), dtype=float32)shape : (1, 32, 256, 256)
ReshapeOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)shape : (32, 256, 256)
ReshapeOperand(type=Activation, shape=(1, 32, 128, 256), dtype=float32)shape : (32, 128, 256)
ReshapeOperand(type=Activation, shape=(32, 256, 128), dtype=float32)shape : (1, 32, 256, 128)
ReshapeOperand(type=Activation, shape=(1, 256, 32, 128), dtype=float32)shape : (256, 4096)
ReshapeOperand(type=Activation, shape=(256, 14336), dtype=float32)shape : (1, 256, 14336)
SigmoidOperand(type=Activation, shape=(1, 256, 14336), dtype=float32)
SineOperand(type=Activation, shape=(1, 256, 128), dtype=float32)
SoftmaxOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(1, 256, 1), dtype=float32)
SubtractOperand(type=Constant, name=const_60, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
SubtractOperand(type=Constant, name=const_70, dtype=int32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=int32)
TransposeOperand(type=Parameter, shape=(1024, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 256, 32, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(1, 64, 256), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 256, 8, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 256, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 128, 256), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(14336, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 14336), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(128256, 4096), dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Activation, shape=(1, 256), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 1, 256), dtype=float32)dim : 2
UnsqueezeOperand(type=Constant, name=model.rotary_emb.inv_freq, dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(1, 64), dtype=float32)dim : 2
UnsqueezeOperand(type=Activation, shape=(1, 256, 128), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)dim : 2
diff --git a/model_analysis_docs/Models/llama3/pt_Llama_3_1_8B_seq_cls.md b/model_analysis_docs/Models/llama3/pt_Llama_3_1_8B_seq_cls.md new file mode 100644 index 000000000..bc2fef8a6 --- /dev/null +++ b/model_analysis_docs/Models/llama3/pt_Llama_3_1_8B_seq_cls.md @@ -0,0 +1,782 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AddOperand(type=Activation, shape=(1, 4, 1), dtype=float32)
X
Operand(type=Constant, name=const_00, dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)
X
Operand(type=Constant, name=const_50, dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)
AddOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)
AddOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 4096), dtype=float32)
AdvIndexOperand(type=Activation, shape=(1, 2), dtype=float32)
X
Operand(type=Constant, name=const_980, dtype=int64)
CastOperand(type=Parameter, shape=(128256, 4096), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(1, 4, 4096), dtype=bfloat16)dtype : torch.float32
ConcatenateOperand(type=Activation, shape=(1, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)
axis : -1
CosineOperand(type=Activation, shape=(1, 4, 128), dtype=float32)
EmbeddingOperand(type=Activation, shape=(1, 4), dtype=int64)
X
Operand(type=Activation, shape=(128256, 4096), dtype=bfloat16)
IdentityOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)
IndexOperand(type=Activation, shape=(1, 4, 2), dtype=float32)dim : -2
start : 3
stop : 4
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
MatmulOperand(type=Activation, shape=(1, 64, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32)
MatmulOperand(type=Activation, shape=(4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(32, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(32, 128, 4), dtype=float32)
MatmulOperand(type=Activation, shape=(32, 4, 4), dtype=float32)
X
Operand(type=Activation, shape=(32, 4, 128), dtype=float32)
MatmulOperand(type=Activation, shape=(4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 14336), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 4, 14336), dtype=float32)
X
Operand(type=Activation, shape=(14336, 4096), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 2), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 1), dtype=float32)
MultiplyOperand(type=Parameter, shape=(4096,), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 4, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 4, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)
X
Operand(type=Constant, name=const_30, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 4, 14336), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 14336), dtype=float32)
ReciprocalOperand(type=Activation, shape=(1, 4, 1), dtype=float32)
ReduceAvgOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)dim : -1
keep_dim : True
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 4, 128), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 4, 128), dtype=float32)repeats : 4
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(32, 4, 4), dtype=float32)shape : (1, 32, 4, 4)
ReshapeOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)shape : (32, 4, 4)
ReshapeOperand(type=Activation, shape=(1, 1, 2), dtype=float32)shape : (1, 2)
ReshapeOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)shape : (4, 4096)
ReshapeOperand(type=Activation, shape=(4, 4096), dtype=float32)shape : (1, 4, 32, 128)
ReshapeOperand(type=Activation, shape=(4, 4096), dtype=float32)shape : (1, 4, 4096)
ReshapeOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)shape : (32, 4, 128)
ReshapeOperand(type=Activation, shape=(4, 1024), dtype=float32)shape : (1, 4, 8, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 4, 128), dtype=float32)shape : (32, 4, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 4, 128), dtype=float32)shape : (1, 32, 4, 128)
ReshapeOperand(type=Activation, shape=(1, 32, 128, 4), dtype=float32)shape : (32, 128, 4)
ReshapeOperand(type=Activation, shape=(32, 4, 128), dtype=float32)shape : (1, 32, 4, 128)
ReshapeOperand(type=Activation, shape=(1, 4, 32, 128), dtype=float32)shape : (4, 4096)
ReshapeOperand(type=Activation, shape=(4, 14336), dtype=float32)shape : (1, 4, 14336)
SigmoidOperand(type=Activation, shape=(1, 4, 14336), dtype=float32)
SineOperand(type=Activation, shape=(1, 4, 128), dtype=float32)
SoftmaxOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(1, 4, 1), dtype=float32)
TransposeOperand(type=Parameter, shape=(1024, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(2, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(14336, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 14336), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 4, 32, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(1, 64, 4), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 4, 8, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 4, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 128, 4), dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Constant, name=model.rotary_emb.inv_freq, dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(1, 64), dtype=float32)dim : 2
UnsqueezeOperand(type=Activation, shape=(1, 4, 128), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)dim : 2
diff --git a/model_analysis_docs/Models/llama3/pt_Llama_3_2_1B_Instruct_causal_lm.md b/model_analysis_docs/Models/llama3/pt_Llama_3_2_1B_Instruct_causal_lm.md new file mode 100644 index 000000000..61cbe94ea --- /dev/null +++ b/model_analysis_docs/Models/llama3/pt_Llama_3_2_1B_Instruct_causal_lm.md @@ -0,0 +1,902 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AbsOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
AddOperand(type=Activation, shape=(1, 256, 1), dtype=float32)
X
Operand(type=Constant, name=const_00, dtype=float32)
AddOperand(type=Constant, name=const_80, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 1, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
AddOperand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=uint1)dtype : torch.float32
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=uint1)dtype : torch.int32
CastOperand(type=Activation, shape=(1, 256, 2048), dtype=bfloat16)dtype : torch.float32
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)dtype : torch.bool[MLIR][MLIR runtime ttnn ] tt::exception tt-mlir/runtime/lib/ttnn/runtime.cpp Unsupported data type
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=int32)dtype : torch.bool[MLIR][MLIR runtime ttnn ] tt::exception tt-mlir/runtime/lib/ttnn/runtime.cpp Unsupported data type
CastOperand(type=Parameter, shape=(128256, 2048), dtype=float32)dtype : torch.bfloat16
ClipOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)min : 0.0
max : 1.0
ConcatenateOperand(type=Activation, shape=(1, 256, 32), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 32), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 32, 256, 32), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 256, 32), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 8, 256, 32), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 256, 32), dtype=float32)
axis : -1
CosineOperand(type=Activation, shape=(1, 256, 64), dtype=float32)
EmbeddingOperand(type=Activation, shape=(1, 256), dtype=int32)
X
Operand(type=Activation, shape=(128256, 2048), dtype=bfloat16)
GreaterOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
X
Operand(type=Constant, name=const_90, dtype=float32)
[TT_METAL][ttnn elementwise binary] RuntimeError BinaryOpType cannot be mapped to BcastOpMath
IdentityOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
IndexOperand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)dim : -1
start : 32
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)dim : -1
start : 0
stop : 32
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)dim : -1
start : 32
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)dim : -1
start : 0
stop : 32
stride : 1
MatmulOperand(type=Activation, shape=(256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 256, 8192), dtype=float32)
X
Operand(type=Activation, shape=(8192, 2048), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 32, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32)
MatmulOperand(type=Activation, shape=(256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(32, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(32, 64, 256), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(32, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(32, 256, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 8192), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 128256), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32)
MultiplyOperand(type=Constant, name=const_50, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
MultiplyOperand(type=Constant, name=const_100, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 1), dtype=float32)
MultiplyOperand(type=Parameter, shape=(2048,), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 64), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 256, 32), dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 64), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 256, 32), dtype=float32)
X
Operand(type=Constant, name=const_30, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 256, 8192), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 8192), dtype=float32)
ReciprocalOperand(type=Activation, shape=(1, 256, 1), dtype=float32)
ReduceAvgOperand(type=Activation, shape=(1, 256, 2048), dtype=float32)dim : -1
keep_dim : True
RepeatInterleaveOperand(type=Activation, shape=(1, 32, 1), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 32, 1), dtype=float32)repeats : 1
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 256, 64), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 256, 64), dtype=float32)repeats : 4
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(1, 256, 2048), dtype=float32)shape : (256, 2048)
ReshapeOperand(type=Activation, shape=(256, 2048), dtype=float32)shape : (1, 256, 2048)
ReshapeOperand(type=Activation, shape=(256, 2048), dtype=float32)shape : (1, 256, 32, 64)
ReshapeOperand(type=Activation, shape=(32, 256, 256), dtype=float32)shape : (1, 32, 256, 256)
ReshapeOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)shape : (32, 256, 256)
ReshapeOperand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)shape : (32, 256, 64)
ReshapeOperand(type=Activation, shape=(256, 512), dtype=float32)shape : (1, 256, 8, 64)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 256, 64), dtype=float32)shape : (32, 256, 64)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 256, 64), dtype=float32)shape : (1, 32, 256, 64)
ReshapeOperand(type=Activation, shape=(1, 32, 64, 256), dtype=float32)shape : (32, 64, 256)
ReshapeOperand(type=Activation, shape=(32, 256, 64), dtype=float32)shape : (1, 32, 256, 64)
ReshapeOperand(type=Activation, shape=(1, 256, 32, 64), dtype=float32)shape : (256, 2048)
ReshapeOperand(type=Activation, shape=(256, 8192), dtype=float32)shape : (1, 256, 8192)
SigmoidOperand(type=Activation, shape=(1, 256, 8192), dtype=float32)
SineOperand(type=Activation, shape=(1, 256, 64), dtype=float32)
SoftmaxOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(1, 256, 1), dtype=float32)
SubtractOperand(type=Constant, name=const_60, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
SubtractOperand(type=Constant, name=const_70, dtype=int32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=int32)
TransposeOperand(type=Parameter, shape=(2048, 2048), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(8192, 2048), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(2048, 8192), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(512, 2048), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 256, 32, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(1, 32, 256), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 256, 8, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 256, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 64, 256), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(128256, 2048), dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Activation, shape=(1, 32), dtype=float32)dim : 2
UnsqueezeOperand(type=Activation, shape=(1, 256), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 1, 256), dtype=float32)dim : 2
UnsqueezeOperand(type=Constant, name=model.rotary_emb.inv_freq, dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(1, 256, 64), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)dim : 2
diff --git a/model_analysis_docs/Models/llama3/pt_Llama_3_2_1B_Instruct_seq_cls.md b/model_analysis_docs/Models/llama3/pt_Llama_3_2_1B_Instruct_seq_cls.md new file mode 100644 index 000000000..b2e1d0745 --- /dev/null +++ b/model_analysis_docs/Models/llama3/pt_Llama_3_2_1B_Instruct_seq_cls.md @@ -0,0 +1,782 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AddOperand(type=Activation, shape=(1, 4, 1), dtype=float32)
X
Operand(type=Constant, name=const_00, dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)
AddOperand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)
X
Operand(type=Constant, name=const_50, dtype=float32)
AddOperand(type=Activation, shape=(1, 4, 2048), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 2048), dtype=float32)
AdvIndexOperand(type=Activation, shape=(1, 2), dtype=float32)
X
Operand(type=Constant, name=const_980, dtype=int64)
CastOperand(type=Parameter, shape=(128256, 2048), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(1, 4, 2048), dtype=bfloat16)dtype : torch.float32
ConcatenateOperand(type=Activation, shape=(1, 4, 32), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 32), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 32, 4, 32), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 4, 32), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 8, 4, 32), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 4, 32), dtype=float32)
axis : -1
CosineOperand(type=Activation, shape=(1, 4, 64), dtype=float32)
EmbeddingOperand(type=Activation, shape=(1, 4), dtype=int64)
X
Operand(type=Activation, shape=(128256, 2048), dtype=bfloat16)
IdentityOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)
IndexOperand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)dim : -1
start : 32
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)dim : -1
start : 0
stop : 32
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)dim : -1
start : 32
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)dim : -1
start : 0
stop : 32
stride : 1
IndexOperand(type=Activation, shape=(1, 4, 2), dtype=float32)dim : -2
start : 3
stop : 4
stride : 1
MatmulOperand(type=Activation, shape=(4, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 32, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32)
MatmulOperand(type=Activation, shape=(4, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(32, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(32, 64, 4), dtype=float32)
MatmulOperand(type=Activation, shape=(32, 4, 4), dtype=float32)
X
Operand(type=Activation, shape=(32, 4, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(4, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 8192), dtype=float32)
MatmulOperand(type=Activation, shape=(1, 4, 8192), dtype=float32)
X
Operand(type=Activation, shape=(8192, 2048), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 4, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 4, 2048), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 2048), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 4, 2048), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 1), dtype=float32)
MultiplyOperand(type=Parameter, shape=(2048,), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 2048), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 4, 64), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 4, 32), dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 4, 64), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 4, 32), dtype=float32)
X
Operand(type=Constant, name=const_30, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 4, 8192), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 8192), dtype=float32)
ReciprocalOperand(type=Activation, shape=(1, 4, 1), dtype=float32)
ReduceAvgOperand(type=Activation, shape=(1, 4, 2048), dtype=float32)dim : -1
keep_dim : True
RepeatInterleaveOperand(type=Activation, shape=(1, 32, 1), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 32, 1), dtype=float32)repeats : 1
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 4, 64), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 4, 64), dtype=float32)repeats : 4
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(1, 4, 2048), dtype=float32)shape : (4, 2048)
ReshapeOperand(type=Activation, shape=(4, 2048), dtype=float32)shape : (1, 4, 32, 64)
ReshapeOperand(type=Activation, shape=(4, 2048), dtype=float32)shape : (1, 4, 2048)
ReshapeOperand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)shape : (32, 4, 64)
ReshapeOperand(type=Activation, shape=(4, 512), dtype=float32)shape : (1, 4, 8, 64)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 4, 64), dtype=float32)shape : (32, 4, 64)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 4, 64), dtype=float32)shape : (1, 32, 4, 64)
ReshapeOperand(type=Activation, shape=(32, 4, 4), dtype=float32)shape : (1, 32, 4, 4)
ReshapeOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)shape : (32, 4, 4)
ReshapeOperand(type=Activation, shape=(1, 32, 64, 4), dtype=float32)shape : (32, 64, 4)
ReshapeOperand(type=Activation, shape=(32, 4, 64), dtype=float32)shape : (1, 32, 4, 64)
ReshapeOperand(type=Activation, shape=(1, 4, 32, 64), dtype=float32)shape : (4, 2048)
ReshapeOperand(type=Activation, shape=(4, 8192), dtype=float32)shape : (1, 4, 8192)
ReshapeOperand(type=Activation, shape=(1, 1, 2), dtype=float32)shape : (1, 2)
SigmoidOperand(type=Activation, shape=(1, 4, 8192), dtype=float32)
SineOperand(type=Activation, shape=(1, 4, 64), dtype=float32)
SoftmaxOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(1, 4, 1), dtype=float32)
TransposeOperand(type=Parameter, shape=(2048, 2048), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(8192, 2048), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(2048, 8192), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(512, 2048), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(2, 2048), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 4, 32, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(1, 32, 4), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 4, 8, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 4, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 64, 4), dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Activation, shape=(1, 32), dtype=float32)dim : 2
UnsqueezeOperand(type=Constant, name=model.rotary_emb.inv_freq, dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(1, 4, 64), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)dim : 2
diff --git a/model_analysis_docs/Models/llama3/pt_Llama_3_2_1B_causal_lm.md b/model_analysis_docs/Models/llama3/pt_Llama_3_2_1B_causal_lm.md index 4452bb93c..61cbe94ea 100644 --- a/model_analysis_docs/Models/llama3/pt_Llama_3_2_1B_causal_lm.md +++ b/model_analysis_docs/Models/llama3/pt_Llama_3_2_1B_causal_lm.md @@ -60,7 +60,7 @@ Add - Operand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 256, 64), dtype=float32) + Operand(type=Constant, name=const_80, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 1, 256), dtype=float32) ✅ ✅ @@ -70,7 +70,7 @@ Add - Operand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 256, 64), dtype=float32) + Operand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32) ✅ ✅ @@ -80,7 +80,7 @@ Add - Operand(type=Constant, name=const_80, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 1, 256), dtype=float32) + Operand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 256, 64), dtype=float32) ✅ ✅ @@ -90,7 +90,7 @@ Add - Operand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32) + Operand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 256, 64), dtype=float32) ✅ ✅ @@ -118,6 +118,16 @@ + + Cast + Operand(type=Activation, shape=(1, 256, 2048), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Cast Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32) @@ -138,6 +148,16 @@ [MLIR][MLIR runtime ttnn ] tt::exception tt-mlir/runtime/lib/ttnn/runtime.cpp Unsupported data type + + Cast + Operand(type=Parameter, shape=(128256, 2048), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Clip Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32) @@ -190,13 +210,13 @@ Embedding - Operand(type=Activation, shape=(1, 256), dtype=int32)
X
Operand(type=Parameter, shape=(128256, 2048), dtype=float32) + Operand(type=Activation, shape=(1, 256), dtype=int32)
X
Operand(type=Activation, shape=(128256, 2048), dtype=bfloat16) ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Greater @@ -262,21 +282,21 @@ Matmul Operand(type=Activation, shape=(256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 256, 8192), dtype=float32)
X
Operand(type=Activation, shape=(8192, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -292,11 +312,11 @@ Matmul Operand(type=Activation, shape=(256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -340,7 +360,7 @@ Multiply - Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 2048), dtype=float32) + Operand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32) ✅ ✅ @@ -350,7 +370,7 @@ Multiply - Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 1), dtype=float32) + Operand(type=Constant, name=const_50, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32) ✅ ✅ @@ -360,7 +380,7 @@ Multiply - Operand(type=Parameter, shape=(2048,), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 2048), dtype=float32) + Operand(type=Constant, name=const_100, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32) ✅ ✅ @@ -370,7 +390,7 @@ Multiply - Operand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 64), dtype=float32) + Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 2048), dtype=float32) ✅ ✅ @@ -380,7 +400,7 @@ Multiply - Operand(type=Activation, shape=(1, 32, 256, 32), dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32) + Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 1), dtype=float32) ✅ ✅ @@ -390,7 +410,7 @@ Multiply - Operand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 64), dtype=float32) + Operand(type=Parameter, shape=(2048,), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 2048), dtype=float32) ✅ ✅ @@ -400,7 +420,7 @@ Multiply - Operand(type=Activation, shape=(1, 8, 256, 32), dtype=float32)
X
Operand(type=Constant, name=const_30, dtype=float32) + Operand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 64), dtype=float32) ✅ ✅ @@ -410,7 +430,7 @@ Multiply - Operand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32) + Operand(type=Activation, shape=(1, 32, 256, 32), dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32) ✅ ✅ @@ -420,7 +440,7 @@ Multiply - Operand(type=Constant, name=const_50, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32) + Operand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 64), dtype=float32) ✅ ✅ @@ -430,7 +450,7 @@ Multiply - Operand(type=Constant, name=const_100, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32) + Operand(type=Activation, shape=(1, 8, 256, 32), dtype=float32)
X
Operand(type=Constant, name=const_30, dtype=float32) ✅ ✅ @@ -540,8 +560,8 @@ Reshape - Operand(type=Activation, shape=(1, 32, 256, 64), dtype=float32) - shape : (32, 256, 64) + Operand(type=Activation, shape=(32, 256, 256), dtype=float32) + shape : (1, 32, 256, 256) ✅ ✅ ✅ @@ -550,8 +570,8 @@ Reshape - Operand(type=Activation, shape=(256, 512), dtype=float32) - shape : (1, 256, 8, 64) + Operand(type=Activation, shape=(1, 32, 256, 256), dtype=float32) + shape : (32, 256, 256) ✅ ✅ ✅ @@ -560,7 +580,7 @@ Reshape - Operand(type=Activation, shape=(1, 8, 4, 256, 64), dtype=float32) + Operand(type=Activation, shape=(1, 32, 256, 64), dtype=float32) shape : (32, 256, 64) ✅ ✅ @@ -570,8 +590,8 @@ Reshape - Operand(type=Activation, shape=(1, 8, 4, 256, 64), dtype=float32) - shape : (1, 32, 256, 64) + Operand(type=Activation, shape=(256, 512), dtype=float32) + shape : (1, 256, 8, 64) ✅ ✅ ✅ @@ -580,8 +600,8 @@ Reshape - Operand(type=Activation, shape=(32, 256, 256), dtype=float32) - shape : (1, 32, 256, 256) + Operand(type=Activation, shape=(1, 8, 4, 256, 64), dtype=float32) + shape : (32, 256, 64) ✅ ✅ ✅ @@ -590,8 +610,8 @@ Reshape - Operand(type=Activation, shape=(1, 32, 256, 256), dtype=float32) - shape : (32, 256, 256) + Operand(type=Activation, shape=(1, 8, 4, 256, 64), dtype=float32) + shape : (1, 32, 256, 64) ✅ ✅ ✅ diff --git a/model_analysis_docs/Models/llama3/pt_Llama_3_2_1B_seq_cls.md b/model_analysis_docs/Models/llama3/pt_Llama_3_2_1B_seq_cls.md index 872dda85c..b2e1d0745 100644 --- a/model_analysis_docs/Models/llama3/pt_Llama_3_2_1B_seq_cls.md +++ b/model_analysis_docs/Models/llama3/pt_Llama_3_2_1B_seq_cls.md @@ -78,6 +78,26 @@ + + Cast + Operand(type=Parameter, shape=(128256, 2048), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 4, 2048), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 4, 32), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 32), dtype=float32) @@ -120,13 +140,13 @@ Embedding - Operand(type=Activation, shape=(1, 4), dtype=int64)
X
Operand(type=Parameter, shape=(128256, 2048), dtype=float32) + Operand(type=Activation, shape=(1, 4), dtype=int64)
X
Operand(type=Activation, shape=(128256, 2048), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -190,33 +210,33 @@ Matmul - Operand(type=Activation, shape=(1, 32, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32) + Operand(type=Activation, shape=(4, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul - Operand(type=Activation, shape=(4, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) - - + Operand(type=Activation, shape=(1, 32, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32) + ✅ + ✅ + ✅ - � Matmul Operand(type=Activation, shape=(4, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,21 +272,21 @@ Matmul Operand(type=Activation, shape=(1, 4, 8192), dtype=float32)
X
Operand(type=Activation, shape=(8192, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 4, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2), dtype=float32) + ✅ + ✅ + ✅ - - � - Multiply diff --git a/model_analysis_docs/Models/llama3/pt_Meta_Llama_3_8B_Instruct_causal_lm.md b/model_analysis_docs/Models/llama3/pt_Meta_Llama_3_8B_Instruct_causal_lm.md new file mode 100644 index 000000000..1dd6ee52a --- /dev/null +++ b/model_analysis_docs/Models/llama3/pt_Meta_Llama_3_8B_Instruct_causal_lm.md @@ -0,0 +1,902 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AbsOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 256, 1), dtype=float32)
X
Operand(type=Constant, name=const_00, dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)
AddOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)
AddOperand(type=Constant, name=const_80, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 1, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 4096), dtype=float32)
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=uint1)dtype : torch.float32
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=uint1)dtype : torch.int32
CastOperand(type=Parameter, shape=(128256, 4096), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(1, 256, 4096), dtype=bfloat16)dtype : torch.float32
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)dtype : torch.bool[MLIR][MLIR runtime ttnn ] tt::exception tt-mlir/runtime/lib/ttnn/runtime.cpp Unsupported data type
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=int32)dtype : torch.bool[MLIR][MLIR runtime ttnn ] tt::exception tt-mlir/runtime/lib/ttnn/runtime.cpp Unsupported data type
ClipOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)min : 0.0
max : 1.0
ConcatenateOperand(type=Activation, shape=(1, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
axis : -1
CosineOperand(type=Activation, shape=(1, 256, 128), dtype=float32)
EmbeddingOperand(type=Activation, shape=(1, 256), dtype=int32)
X
Operand(type=Activation, shape=(128256, 4096), dtype=bfloat16)
GreaterOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
X
Operand(type=Constant, name=const_90, dtype=float32)
[TT_METAL][ttnn elementwise binary] RuntimeError BinaryOpType cannot be mapped to BcastOpMath
IdentityOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
IndexOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
MatmulOperand(type=Activation, shape=(256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(1, 64, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32)
MatmulOperand(type=Activation, shape=(256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(32, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(32, 128, 256), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(32, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(32, 256, 128), dtype=float32)
MatmulOperand(type=Activation, shape=(256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 14336), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(1, 256, 14336), dtype=float32)
X
Operand(type=Activation, shape=(14336, 4096), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 128256), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 1), dtype=float32)
MultiplyOperand(type=Parameter, shape=(4096,), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
X
Operand(type=Constant, name=const_30, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32)
MultiplyOperand(type=Constant, name=const_50, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
MultiplyOperand(type=Constant, name=const_100, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 256, 14336), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 14336), dtype=float32)
ReciprocalOperand(type=Activation, shape=(1, 256, 1), dtype=float32)
ReduceAvgOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)dim : -1
keep_dim : True
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 256, 128), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 256, 128), dtype=float32)repeats : 4
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(256, 1024), dtype=float32)shape : (1, 256, 8, 128)
ReshapeOperand(type=Activation, shape=(256, 4096), dtype=float32)shape : (1, 256, 4096)
ReshapeOperand(type=Activation, shape=(256, 4096), dtype=float32)shape : (1, 256, 32, 128)
ReshapeOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)shape : (256, 4096)
ReshapeOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)shape : (32, 256, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 256, 128), dtype=float32)shape : (32, 256, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 256, 128), dtype=float32)shape : (1, 32, 256, 128)
ReshapeOperand(type=Activation, shape=(32, 256, 256), dtype=float32)shape : (1, 32, 256, 256)
ReshapeOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)shape : (32, 256, 256)
ReshapeOperand(type=Activation, shape=(1, 32, 128, 256), dtype=float32)shape : (32, 128, 256)
ReshapeOperand(type=Activation, shape=(32, 256, 128), dtype=float32)shape : (1, 32, 256, 128)
ReshapeOperand(type=Activation, shape=(1, 256, 32, 128), dtype=float32)shape : (256, 4096)
ReshapeOperand(type=Activation, shape=(256, 14336), dtype=float32)shape : (1, 256, 14336)
SigmoidOperand(type=Activation, shape=(1, 256, 14336), dtype=float32)
SineOperand(type=Activation, shape=(1, 256, 128), dtype=float32)
SoftmaxOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(1, 256, 1), dtype=float32)
SubtractOperand(type=Constant, name=const_60, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
SubtractOperand(type=Constant, name=const_70, dtype=int32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=int32)
TransposeOperand(type=Parameter, shape=(1024, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 256, 32, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(1, 64, 256), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 256, 8, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 256, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 128, 256), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(14336, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 14336), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(128256, 4096), dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Activation, shape=(1, 256), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 1, 256), dtype=float32)dim : 2
UnsqueezeOperand(type=Constant, name=model.rotary_emb.inv_freq, dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(1, 64), dtype=float32)dim : 2
UnsqueezeOperand(type=Activation, shape=(1, 256, 128), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)dim : 2
diff --git a/model_analysis_docs/Models/llama3/pt_Meta_Llama_3_8B_Instruct_seq_cls.md b/model_analysis_docs/Models/llama3/pt_Meta_Llama_3_8B_Instruct_seq_cls.md new file mode 100644 index 000000000..bc2fef8a6 --- /dev/null +++ b/model_analysis_docs/Models/llama3/pt_Meta_Llama_3_8B_Instruct_seq_cls.md @@ -0,0 +1,782 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AddOperand(type=Activation, shape=(1, 4, 1), dtype=float32)
X
Operand(type=Constant, name=const_00, dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)
X
Operand(type=Constant, name=const_50, dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)
AddOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)
AddOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 4096), dtype=float32)
AdvIndexOperand(type=Activation, shape=(1, 2), dtype=float32)
X
Operand(type=Constant, name=const_980, dtype=int64)
CastOperand(type=Parameter, shape=(128256, 4096), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(1, 4, 4096), dtype=bfloat16)dtype : torch.float32
ConcatenateOperand(type=Activation, shape=(1, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)
axis : -1
CosineOperand(type=Activation, shape=(1, 4, 128), dtype=float32)
EmbeddingOperand(type=Activation, shape=(1, 4), dtype=int64)
X
Operand(type=Activation, shape=(128256, 4096), dtype=bfloat16)
IdentityOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)
IndexOperand(type=Activation, shape=(1, 4, 2), dtype=float32)dim : -2
start : 3
stop : 4
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
MatmulOperand(type=Activation, shape=(1, 64, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32)
MatmulOperand(type=Activation, shape=(4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(32, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(32, 128, 4), dtype=float32)
MatmulOperand(type=Activation, shape=(32, 4, 4), dtype=float32)
X
Operand(type=Activation, shape=(32, 4, 128), dtype=float32)
MatmulOperand(type=Activation, shape=(4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 14336), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 4, 14336), dtype=float32)
X
Operand(type=Activation, shape=(14336, 4096), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 2), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 1), dtype=float32)
MultiplyOperand(type=Parameter, shape=(4096,), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 4, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 4, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)
X
Operand(type=Constant, name=const_30, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 4, 14336), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 14336), dtype=float32)
ReciprocalOperand(type=Activation, shape=(1, 4, 1), dtype=float32)
ReduceAvgOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)dim : -1
keep_dim : True
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 4, 128), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 4, 128), dtype=float32)repeats : 4
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(32, 4, 4), dtype=float32)shape : (1, 32, 4, 4)
ReshapeOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)shape : (32, 4, 4)
ReshapeOperand(type=Activation, shape=(1, 1, 2), dtype=float32)shape : (1, 2)
ReshapeOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)shape : (4, 4096)
ReshapeOperand(type=Activation, shape=(4, 4096), dtype=float32)shape : (1, 4, 32, 128)
ReshapeOperand(type=Activation, shape=(4, 4096), dtype=float32)shape : (1, 4, 4096)
ReshapeOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)shape : (32, 4, 128)
ReshapeOperand(type=Activation, shape=(4, 1024), dtype=float32)shape : (1, 4, 8, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 4, 128), dtype=float32)shape : (32, 4, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 4, 128), dtype=float32)shape : (1, 32, 4, 128)
ReshapeOperand(type=Activation, shape=(1, 32, 128, 4), dtype=float32)shape : (32, 128, 4)
ReshapeOperand(type=Activation, shape=(32, 4, 128), dtype=float32)shape : (1, 32, 4, 128)
ReshapeOperand(type=Activation, shape=(1, 4, 32, 128), dtype=float32)shape : (4, 4096)
ReshapeOperand(type=Activation, shape=(4, 14336), dtype=float32)shape : (1, 4, 14336)
SigmoidOperand(type=Activation, shape=(1, 4, 14336), dtype=float32)
SineOperand(type=Activation, shape=(1, 4, 128), dtype=float32)
SoftmaxOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(1, 4, 1), dtype=float32)
TransposeOperand(type=Parameter, shape=(1024, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(2, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(14336, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 14336), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 4, 32, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(1, 64, 4), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 4, 8, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 4, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 128, 4), dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Constant, name=model.rotary_emb.inv_freq, dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(1, 64), dtype=float32)dim : 2
UnsqueezeOperand(type=Activation, shape=(1, 4, 128), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)dim : 2
diff --git a/model_analysis_docs/Models/llama3/pt_Meta_Llama_3_8B_causal_lm.md b/model_analysis_docs/Models/llama3/pt_Meta_Llama_3_8B_causal_lm.md new file mode 100644 index 000000000..1dd6ee52a --- /dev/null +++ b/model_analysis_docs/Models/llama3/pt_Meta_Llama_3_8B_causal_lm.md @@ -0,0 +1,902 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AbsOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 256, 1), dtype=float32)
X
Operand(type=Constant, name=const_00, dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)
AddOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)
AddOperand(type=Constant, name=const_80, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 1, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
AddOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 4096), dtype=float32)
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=uint1)dtype : torch.float32
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=uint1)dtype : torch.int32
CastOperand(type=Parameter, shape=(128256, 4096), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(1, 256, 4096), dtype=bfloat16)dtype : torch.float32
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)dtype : torch.bool[MLIR][MLIR runtime ttnn ] tt::exception tt-mlir/runtime/lib/ttnn/runtime.cpp Unsupported data type
CastOperand(type=Activation, shape=(1, 1, 256, 256), dtype=int32)dtype : torch.bool[MLIR][MLIR runtime ttnn ] tt::exception tt-mlir/runtime/lib/ttnn/runtime.cpp Unsupported data type
ClipOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)min : 0.0
max : 1.0
ConcatenateOperand(type=Activation, shape=(1, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
axis : -1
CosineOperand(type=Activation, shape=(1, 256, 128), dtype=float32)
EmbeddingOperand(type=Activation, shape=(1, 256), dtype=int32)
X
Operand(type=Activation, shape=(128256, 4096), dtype=bfloat16)
GreaterOperand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
X
Operand(type=Constant, name=const_90, dtype=float32)
[TT_METAL][ttnn elementwise binary] RuntimeError BinaryOpType cannot be mapped to BcastOpMath
IdentityOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
IndexOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
MatmulOperand(type=Activation, shape=(256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(1, 64, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32)
MatmulOperand(type=Activation, shape=(256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(32, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(32, 128, 256), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(32, 256, 256), dtype=float32)
X
Operand(type=Activation, shape=(32, 256, 128), dtype=float32)
MatmulOperand(type=Activation, shape=(256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 14336), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(1, 256, 14336), dtype=float32)
X
Operand(type=Activation, shape=(14336, 4096), dtype=float32)
[TT_METAL][ttnn.matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op_multi_core_reuse_program_factory.cpp Mt % per_core_M == 0
MatmulOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 128256), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 1), dtype=float32)
MultiplyOperand(type=Parameter, shape=(4096,), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 256, 64), dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 256, 64), dtype=float32)
X
Operand(type=Constant, name=const_30, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32)
MultiplyOperand(type=Constant, name=const_50, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
MultiplyOperand(type=Constant, name=const_100, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 256, 14336), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 14336), dtype=float32)
ReciprocalOperand(type=Activation, shape=(1, 256, 1), dtype=float32)
ReduceAvgOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)dim : -1
keep_dim : True
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 256, 128), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 256, 128), dtype=float32)repeats : 4
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(256, 1024), dtype=float32)shape : (1, 256, 8, 128)
ReshapeOperand(type=Activation, shape=(256, 4096), dtype=float32)shape : (1, 256, 4096)
ReshapeOperand(type=Activation, shape=(256, 4096), dtype=float32)shape : (1, 256, 32, 128)
ReshapeOperand(type=Activation, shape=(1, 256, 4096), dtype=float32)shape : (256, 4096)
ReshapeOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)shape : (32, 256, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 256, 128), dtype=float32)shape : (32, 256, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 256, 128), dtype=float32)shape : (1, 32, 256, 128)
ReshapeOperand(type=Activation, shape=(32, 256, 256), dtype=float32)shape : (1, 32, 256, 256)
ReshapeOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)shape : (32, 256, 256)
ReshapeOperand(type=Activation, shape=(1, 32, 128, 256), dtype=float32)shape : (32, 128, 256)
ReshapeOperand(type=Activation, shape=(32, 256, 128), dtype=float32)shape : (1, 32, 256, 128)
ReshapeOperand(type=Activation, shape=(1, 256, 32, 128), dtype=float32)shape : (256, 4096)
ReshapeOperand(type=Activation, shape=(256, 14336), dtype=float32)shape : (1, 256, 14336)
SigmoidOperand(type=Activation, shape=(1, 256, 14336), dtype=float32)
SineOperand(type=Activation, shape=(1, 256, 128), dtype=float32)
SoftmaxOperand(type=Activation, shape=(1, 32, 256, 256), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(1, 256, 1), dtype=float32)
SubtractOperand(type=Constant, name=const_60, dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32)
SubtractOperand(type=Constant, name=const_70, dtype=int32)
X
Operand(type=Activation, shape=(1, 1, 256, 256), dtype=int32)
TransposeOperand(type=Parameter, shape=(1024, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 256, 32, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(1, 64, 256), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 256, 8, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 256, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 256, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 128, 256), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(14336, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 14336), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(128256, 4096), dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Activation, shape=(1, 256), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 1, 256), dtype=float32)dim : 2
UnsqueezeOperand(type=Constant, name=model.rotary_emb.inv_freq, dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(1, 64), dtype=float32)dim : 2
UnsqueezeOperand(type=Activation, shape=(1, 256, 128), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 8, 256, 128), dtype=float32)dim : 2
diff --git a/model_analysis_docs/Models/llama3/pt_Meta_Llama_3_8B_seq_cls.md b/model_analysis_docs/Models/llama3/pt_Meta_Llama_3_8B_seq_cls.md new file mode 100644 index 000000000..bc2fef8a6 --- /dev/null +++ b/model_analysis_docs/Models/llama3/pt_Meta_Llama_3_8B_seq_cls.md @@ -0,0 +1,782 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AddOperand(type=Activation, shape=(1, 4, 1), dtype=float32)
X
Operand(type=Constant, name=const_00, dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)
X
Operand(type=Constant, name=const_50, dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)
AddOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)
AddOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 4096), dtype=float32)
AdvIndexOperand(type=Activation, shape=(1, 2), dtype=float32)
X
Operand(type=Constant, name=const_980, dtype=int64)
CastOperand(type=Parameter, shape=(128256, 4096), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(1, 4, 4096), dtype=bfloat16)dtype : torch.float32
ConcatenateOperand(type=Activation, shape=(1, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)
axis : -1
CosineOperand(type=Activation, shape=(1, 4, 128), dtype=float32)
EmbeddingOperand(type=Activation, shape=(1, 4), dtype=int64)
X
Operand(type=Activation, shape=(128256, 4096), dtype=bfloat16)
IdentityOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)
IndexOperand(type=Activation, shape=(1, 4, 2), dtype=float32)dim : -2
start : 3
stop : 4
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
MatmulOperand(type=Activation, shape=(1, 64, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32)
MatmulOperand(type=Activation, shape=(4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(32, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(32, 128, 4), dtype=float32)
MatmulOperand(type=Activation, shape=(32, 4, 4), dtype=float32)
X
Operand(type=Activation, shape=(32, 4, 128), dtype=float32)
MatmulOperand(type=Activation, shape=(4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 14336), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 4, 14336), dtype=float32)
X
Operand(type=Activation, shape=(14336, 4096), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 2), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 1), dtype=float32)
MultiplyOperand(type=Parameter, shape=(4096,), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 4, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 4, 64), dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 4, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 4, 64), dtype=float32)
X
Operand(type=Constant, name=const_30, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 4, 14336), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 14336), dtype=float32)
ReciprocalOperand(type=Activation, shape=(1, 4, 1), dtype=float32)
ReduceAvgOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)dim : -1
keep_dim : True
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 4, 128), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 4, 128), dtype=float32)repeats : 4
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(32, 4, 4), dtype=float32)shape : (1, 32, 4, 4)
ReshapeOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)shape : (32, 4, 4)
ReshapeOperand(type=Activation, shape=(1, 1, 2), dtype=float32)shape : (1, 2)
ReshapeOperand(type=Activation, shape=(1, 4, 4096), dtype=float32)shape : (4, 4096)
ReshapeOperand(type=Activation, shape=(4, 4096), dtype=float32)shape : (1, 4, 32, 128)
ReshapeOperand(type=Activation, shape=(4, 4096), dtype=float32)shape : (1, 4, 4096)
ReshapeOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)shape : (32, 4, 128)
ReshapeOperand(type=Activation, shape=(4, 1024), dtype=float32)shape : (1, 4, 8, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 4, 128), dtype=float32)shape : (32, 4, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 4, 128), dtype=float32)shape : (1, 32, 4, 128)
ReshapeOperand(type=Activation, shape=(1, 32, 128, 4), dtype=float32)shape : (32, 128, 4)
ReshapeOperand(type=Activation, shape=(32, 4, 128), dtype=float32)shape : (1, 32, 4, 128)
ReshapeOperand(type=Activation, shape=(1, 4, 32, 128), dtype=float32)shape : (4, 4096)
ReshapeOperand(type=Activation, shape=(4, 14336), dtype=float32)shape : (1, 4, 14336)
SigmoidOperand(type=Activation, shape=(1, 4, 14336), dtype=float32)
SineOperand(type=Activation, shape=(1, 4, 128), dtype=float32)
SoftmaxOperand(type=Activation, shape=(1, 32, 4, 4), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(1, 4, 1), dtype=float32)
TransposeOperand(type=Parameter, shape=(1024, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(2, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(14336, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 14336), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 4, 32, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(1, 64, 4), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 4, 8, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 4, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 4, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 128, 4), dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Constant, name=model.rotary_emb.inv_freq, dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(1, 64), dtype=float32)dim : 2
UnsqueezeOperand(type=Activation, shape=(1, 4, 128), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 8, 4, 128), dtype=float32)dim : 2
diff --git a/model_analysis_docs/Models/mistral/pt_Mistral_7B_v0_1.md b/model_analysis_docs/Models/mistral/pt_Mistral_7B_v0_1.md new file mode 100644 index 000000000..1d5b0e1c6 --- /dev/null +++ b/model_analysis_docs/Models/mistral/pt_Mistral_7B_v0_1.md @@ -0,0 +1,3542 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AddOperand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
AddOperand(type=Activation, shape=(1, 128, 1), dtype=float32)
X
Operand(type=Constant, name=const_00, dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 128, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 128, 128), dtype=float32)
AddOperand(type=Activation, shape=(1, 8, 128, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 128, 128), dtype=float32)
AddOperand(type=Activation, shape=(1, 32, 128, 128), dtype=float32)
X
Operand(type=Constant, name=const_50, dtype=float32)
CastOperand(type=Constant, name=model.embed_tokens.weight, dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(1, 128, 4096), dtype=bfloat16)dtype : torch.float32
ConcatenateOperand(type=Activation, shape=(1, 128, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 32, 128, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 128, 64), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 8, 128, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 128, 64), dtype=float32)
axis : -1
CosineOperand(type=Activation, shape=(1, 128, 128), dtype=float32)
EmbeddingOperand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(32000, 4096), dtype=bfloat16)
IdentityOperand(type=Activation, shape=(1, 32, 128, 128), dtype=float32)
IndexOperand(type=Activation, shape=(1, 32, 128, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 128, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 128, 128), dtype=float32)dim : -1
start : 64
stop : 128
stride : 1
IndexOperand(type=Activation, shape=(1, 8, 128, 128), dtype=float32)dim : -1
start : 0
stop : 64
stride : 1
MatmulOperand(type=Activation, shape=(128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 64, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32)
MatmulOperand(type=Activation, shape=(128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(32, 128, 128), dtype=float32)
X
Operand(type=Activation, shape=(32, 128, 128), dtype=float32)
MatmulOperand(type=Activation, shape=(128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 14336), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 128, 14336), dtype=float32)
X
Operand(type=Activation, shape=(14336, 4096), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 32000), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 128, 4096), dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 1), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.0.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 128, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 128, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 128, 64), dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 128, 128), dtype=float32)
X
Operand(type=Activation, shape=(1, 1, 128, 128), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 8, 128, 64), dtype=float32)
X
Operand(type=Constant, name=const_30, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 32, 128, 128), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.0.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 128, 14336), dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 14336), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.1.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.1.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.2.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.2.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.3.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.3.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.4.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.4.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.5.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.5.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.6.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.6.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.7.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.7.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.8.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.8.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.9.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.9.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.10.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.10.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.11.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.11.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.12.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.12.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.13.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.13.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.14.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.14.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.15.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.15.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.16.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.16.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.17.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.17.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.18.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.18.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.19.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.19.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.20.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.20.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.21.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.21.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.22.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.22.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.23.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.23.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.24.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.24.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.25.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.25.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.26.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.26.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.27.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.27.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.28.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.28.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.29.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.29.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.30.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.30.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.31.input_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.layers.31.post_attention_layernorm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
MultiplyOperand(type=Constant, name=model.norm.weight, dtype=float32)
X
Operand(type=Activation, shape=(1, 128, 4096), dtype=float32)
ReciprocalOperand(type=Activation, shape=(1, 128, 1), dtype=float32)
ReduceAvgOperand(type=Activation, shape=(1, 128, 4096), dtype=float32)dim : -1
keep_dim : True
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 64, 1), dtype=float32)repeats : 1
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 128, 128), dtype=float32)repeats : 1
dim : 0
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(1, 8, 1, 128, 128), dtype=float32)repeats : 4
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(128, 1024), dtype=float32)shape : (1, 128, 8, 128)
ReshapeOperand(type=Activation, shape=(1, 128, 4096), dtype=float32)shape : (128, 4096)
ReshapeOperand(type=Activation, shape=(128, 4096), dtype=float32)shape : (1, 128, 4096)
ReshapeOperand(type=Activation, shape=(128, 4096), dtype=float32)shape : (1, 128, 32, 128)
ReshapeOperand(type=Activation, shape=(1, 32, 128, 128), dtype=float32)shape : (32, 128, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 128, 128), dtype=float32)shape : (32, 128, 128)
ReshapeOperand(type=Activation, shape=(1, 8, 4, 128, 128), dtype=float32)shape : (1, 32, 128, 128)
ReshapeOperand(type=Activation, shape=(32, 128, 128), dtype=float32)shape : (1, 32, 128, 128)
ReshapeOperand(type=Activation, shape=(1, 128, 32, 128), dtype=float32)shape : (128, 4096)
ReshapeOperand(type=Activation, shape=(128, 14336), dtype=float32)shape : (1, 128, 14336)
SigmoidOperand(type=Activation, shape=(1, 128, 14336), dtype=float32)
SineOperand(type=Activation, shape=(1, 128, 128), dtype=float32)
SoftmaxOperand(type=Activation, shape=(1, 32, 128, 128), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(1, 128, 1), dtype=float32)
TransposeOperand(type=Constant, name=model.layers.0.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 128, 32, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(1, 64, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.0.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 128, 8, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 128, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.0.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 128, 128), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 32, 128, 128), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Constant, name=model.layers.0.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.0.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.0.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.0.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.1.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.1.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.1.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.1.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.1.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.1.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.1.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.2.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.2.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.2.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.2.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.2.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.2.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.2.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.3.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.3.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.3.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.3.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.3.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.3.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.3.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.4.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.4.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.4.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.4.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.4.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.4.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.4.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.5.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.5.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.5.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.5.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.5.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.5.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.5.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.6.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.6.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.6.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.6.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.6.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.6.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.6.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.7.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.7.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.7.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.7.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.7.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.7.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.7.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.8.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.8.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.8.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.8.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.8.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.8.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.8.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.9.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.9.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.9.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.9.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.9.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.9.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.9.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.10.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.10.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.10.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.10.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.10.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.10.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.10.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.11.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.11.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.11.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.11.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.11.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.11.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.11.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.12.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.12.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.12.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.12.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.12.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.12.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.12.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.13.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.13.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.13.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.13.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.13.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.13.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.13.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.14.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.14.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.14.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.14.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.14.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.14.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.14.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.15.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.15.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.15.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.15.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.15.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.15.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.15.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.16.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.16.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.16.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.16.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.16.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.16.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.16.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.17.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.17.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.17.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.17.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.17.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.17.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.17.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.18.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.18.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.18.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.18.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.18.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.18.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.18.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.19.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.19.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.19.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.19.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.19.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.19.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.19.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.20.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.20.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.20.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.20.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.20.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.20.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.20.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.21.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.21.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.21.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.21.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.21.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.21.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.21.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.22.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.22.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.22.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.22.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.22.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.22.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.22.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.23.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.23.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.23.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.23.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.23.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.23.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.23.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.24.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.24.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.24.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.24.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.24.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.24.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.24.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.25.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.25.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.25.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.25.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.25.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.25.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.25.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.26.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.26.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.26.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.26.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.26.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.26.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.26.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.27.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.27.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.27.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.27.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.27.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.27.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.27.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.28.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.28.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.28.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.28.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.28.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.28.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.28.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.29.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.29.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.29.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.29.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.29.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.29.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.29.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.30.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.30.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.30.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.30.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.30.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.30.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.30.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.31.self_attn.q_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.31.self_attn.k_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.31.self_attn.v_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.31.self_attn.o_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.31.mlp.gate_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.31.mlp.up_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=model.layers.31.mlp.down_proj.weight, dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Constant, name=lm_head.weight, dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Constant, name=model.layers.0.self_attn.rotary_emb.inv_freq, dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(1, 64), dtype=float32)dim : 2
UnsqueezeOperand(type=Activation, shape=(1, 128, 128), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(1, 8, 128, 128), dtype=float32)dim : 2
diff --git a/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224.md b/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224.md index 236f9602e..1239afcd3 100644 --- a/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224.md +++ b/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224.md @@ -172,11 +172,11 @@ Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -212,11 +212,11 @@ Matmul Operand(type=Activation, shape=(1, 196, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -224,9 +224,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape diff --git a/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224_in21k.md b/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224_in21k.md index 6d335a066..f8e15fa06 100644 --- a/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224_in21k.md +++ b/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224_in21k.md @@ -202,11 +202,11 @@ Matmul Operand(type=Activation, shape=(1, 196, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -224,9 +224,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape diff --git a/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224_miil.md b/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224_miil.md index 236f9602e..1239afcd3 100644 --- a/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224_miil.md +++ b/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224_miil.md @@ -172,11 +172,11 @@ Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -212,11 +212,11 @@ Matmul Operand(type=Activation, shape=(1, 196, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -224,9 +224,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape diff --git a/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224_miil_in21k.md b/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224_miil_in21k.md index 87345c1cf..a32e3412f 100644 --- a/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224_miil_in21k.md +++ b/model_analysis_docs/Models/mlp_mixer/pt_mixer_b16_224_miil_in21k.md @@ -202,11 +202,11 @@ Matmul Operand(type=Activation, shape=(1, 196, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -224,9 +224,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape diff --git a/model_analysis_docs/Models/mlp_mixer/pt_mixer_b32_224.md b/model_analysis_docs/Models/mlp_mixer/pt_mixer_b32_224.md index 695489e6b..599c5d055 100644 --- a/model_analysis_docs/Models/mlp_mixer/pt_mixer_b32_224.md +++ b/model_analysis_docs/Models/mlp_mixer/pt_mixer_b32_224.md @@ -172,11 +172,11 @@ Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -212,11 +212,11 @@ Matmul Operand(type=Activation, shape=(1, 49, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -224,9 +224,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape diff --git a/model_analysis_docs/Models/mlp_mixer/pt_mixer_l16_224.md b/model_analysis_docs/Models/mlp_mixer/pt_mixer_l16_224.md index e3866be05..427882b53 100644 --- a/model_analysis_docs/Models/mlp_mixer/pt_mixer_l16_224.md +++ b/model_analysis_docs/Models/mlp_mixer/pt_mixer_l16_224.md @@ -172,11 +172,11 @@ Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -212,11 +212,11 @@ Matmul Operand(type=Activation, shape=(1, 196, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -224,9 +224,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape @@ -342,11 +342,11 @@ Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model diff --git a/model_analysis_docs/Models/mlp_mixer/pt_mixer_l16_224_in21k.md b/model_analysis_docs/Models/mlp_mixer/pt_mixer_l16_224_in21k.md index 96a64d5ee..2a735b921 100644 --- a/model_analysis_docs/Models/mlp_mixer/pt_mixer_l16_224_in21k.md +++ b/model_analysis_docs/Models/mlp_mixer/pt_mixer_l16_224_in21k.md @@ -202,11 +202,11 @@ Matmul Operand(type=Activation, shape=(1, 196, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -224,9 +224,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape @@ -342,11 +342,11 @@ Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model diff --git a/model_analysis_docs/Models/mlp_mixer/pt_mixer_l32_224.md b/model_analysis_docs/Models/mlp_mixer/pt_mixer_l32_224.md index 2c43d7d34..7a793464a 100644 --- a/model_analysis_docs/Models/mlp_mixer/pt_mixer_l32_224.md +++ b/model_analysis_docs/Models/mlp_mixer/pt_mixer_l32_224.md @@ -172,11 +172,11 @@ Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -212,11 +212,11 @@ Matmul Operand(type=Activation, shape=(1, 49, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -224,9 +224,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape @@ -342,11 +342,11 @@ Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model diff --git a/model_analysis_docs/Models/mlp_mixer/pt_mixer_s16_224.md b/model_analysis_docs/Models/mlp_mixer/pt_mixer_s16_224.md index c23c34322..15e927c4e 100644 --- a/model_analysis_docs/Models/mlp_mixer/pt_mixer_s16_224.md +++ b/model_analysis_docs/Models/mlp_mixer/pt_mixer_s16_224.md @@ -172,11 +172,11 @@ Matmul Operand(type=Activation, shape=(1, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -212,11 +212,11 @@ Matmul Operand(type=Activation, shape=(1, 196, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -224,9 +224,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape @@ -342,11 +342,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model diff --git a/model_analysis_docs/Models/mlp_mixer/pt_mixer_s32_224.md b/model_analysis_docs/Models/mlp_mixer/pt_mixer_s32_224.md index 1c795bd13..324af113e 100644 --- a/model_analysis_docs/Models/mlp_mixer/pt_mixer_s32_224.md +++ b/model_analysis_docs/Models/mlp_mixer/pt_mixer_s32_224.md @@ -202,21 +202,21 @@ Matmul Operand(type=Activation, shape=(1, 49, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -224,9 +224,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape @@ -342,11 +342,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model diff --git a/model_analysis_docs/Models/mobilenet_v1/pt_mobilenet_v1_192.md b/model_analysis_docs/Models/mobilenet_v1/pt_mobilenet_v1_192.md index a72eaab99..21f22b8e6 100644 --- a/model_analysis_docs/Models/mobilenet_v1/pt_mobilenet_v1_192.md +++ b/model_analysis_docs/Models/mobilenet_v1/pt_mobilenet_v1_192.md @@ -772,11 +772,11 @@ Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 1001), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/mobilenet_v1/pt_mobilenet_v1_224.md b/model_analysis_docs/Models/mobilenet_v1/pt_mobilenet_v1_224.md index 7b9b22529..5bee9feba 100644 --- a/model_analysis_docs/Models/mobilenet_v1/pt_mobilenet_v1_224.md +++ b/model_analysis_docs/Models/mobilenet_v1/pt_mobilenet_v1_224.md @@ -772,11 +772,11 @@ Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1001), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_160.md b/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_160.md index 0b748009a..ece69d67e 100644 --- a/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_160.md +++ b/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_160.md @@ -1322,11 +1322,11 @@ Matmul Operand(type=Activation, shape=(1, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1001), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_224.md b/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_224.md index f987e6ecb..cdb281f03 100644 --- a/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_224.md +++ b/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_224.md @@ -1362,11 +1362,11 @@ Matmul Operand(type=Activation, shape=(1, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1001), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_96.md b/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_96.md index b54809d2e..c719591e7 100644 --- a/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_96.md +++ b/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_96.md @@ -1322,11 +1322,11 @@ Matmul Operand(type=Activation, shape=(1, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1001), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_basic.md b/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_basic.md index 197ddd4fb..6ec4fdd6b 100644 --- a/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_basic.md +++ b/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_basic.md @@ -1362,11 +1362,11 @@ Matmul Operand(type=Activation, shape=(1, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -1982,11 +1982,11 @@ Multiply Operand(type=Constant, name=features.2.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_11414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2012,11 +2012,11 @@ Multiply Operand(type=Constant, name=features.3.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_20414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2042,11 +2042,11 @@ Multiply Operand(type=Constant, name=features.4.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_29414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2072,11 +2072,11 @@ Multiply Operand(type=Constant, name=features.5.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_38414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2102,11 +2102,11 @@ Multiply Operand(type=Constant, name=features.6.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_47414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2132,11 +2132,11 @@ Multiply Operand(type=Constant, name=features.7.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_56414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2162,11 +2162,11 @@ Multiply Operand(type=Constant, name=features.8.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_65414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2192,11 +2192,11 @@ Multiply Operand(type=Constant, name=features.9.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_74414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2222,11 +2222,11 @@ Multiply Operand(type=Constant, name=features.10.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_83414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2252,11 +2252,11 @@ Multiply Operand(type=Constant, name=features.11.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_92414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2282,11 +2282,11 @@ Multiply Operand(type=Constant, name=features.12.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_101414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2312,11 +2312,11 @@ Multiply Operand(type=Constant, name=features.13.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_110414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2342,11 +2342,11 @@ Multiply Operand(type=Constant, name=features.14.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_119414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2372,11 +2372,11 @@ Multiply Operand(type=Constant, name=features.15.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_128414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2402,11 +2402,11 @@ Multiply Operand(type=Constant, name=features.16.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_137414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2432,11 +2432,11 @@ Multiply Operand(type=Constant, name=features.17.conv.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_146414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2462,11 +2462,11 @@ Multiply Operand(type=Constant, name=features.18.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_155414, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reciprocal diff --git a/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_deeplabv3.md b/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_deeplabv3.md index f5f99d37c..736e45fb7 100644 --- a/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_deeplabv3.md +++ b/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_deeplabv3.md @@ -2442,21 +2442,21 @@ Multiply Operand(type=Constant, name=segmentation_head.conv_pool.normalization.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_155430, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply Operand(type=Constant, name=segmentation_head.conv_aspp.normalization.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_158430, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_timm.md b/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_timm.md index 437cd8ec9..c56a43fb9 100644 --- a/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_timm.md +++ b/model_analysis_docs/Models/mobilenet_v2/mobilenetv2_timm.md @@ -1352,11 +1352,11 @@ Matmul Operand(type=Activation, shape=(1, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/mobilenet_v3/pt_mobilenet_v3_large.md b/model_analysis_docs/Models/mobilenet_v3/pt_mobilenet_v3_large.md index 2438aa5fa..870eea1db 100644 --- a/model_analysis_docs/Models/mobilenet_v3/pt_mobilenet_v3_large.md +++ b/model_analysis_docs/Models/mobilenet_v3/pt_mobilenet_v3_large.md @@ -412,11 +412,11 @@ Add Operand(type=Activation, shape=(1, 72, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_57680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -432,11 +432,11 @@ Add Operand(type=Activation, shape=(1, 120, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_77680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -462,11 +462,11 @@ Add Operand(type=Activation, shape=(1, 480, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_148680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -482,11 +482,11 @@ Add Operand(type=Activation, shape=(1, 672, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_168680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -512,11 +512,11 @@ Add Operand(type=Activation, shape=(1, 960, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_217680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1802,21 +1802,21 @@ Matmul Operand(type=Activation, shape=(1, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 960), dtype=float32)
X
Operand(type=Activation, shape=(960, 1280), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2432,21 +2432,21 @@ Multiply Operand(type=Activation, shape=(1, 72, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_58680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply Operand(type=Activation, shape=(1, 120, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_78680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2492,21 +2492,21 @@ Multiply Operand(type=Activation, shape=(1, 480, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_149680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply Operand(type=Activation, shape=(1, 672, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_169680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2522,11 +2522,11 @@ Multiply Operand(type=Activation, shape=(1, 960, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_218680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2792,11 +2792,11 @@ Multiply Operand(type=Constant, name=features.3.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_22452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2822,11 +2822,11 @@ Multiply Operand(type=Constant, name=features.4.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_31452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2862,11 +2862,11 @@ Multiply Operand(type=Constant, name=features.5.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_42452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2902,11 +2902,11 @@ Multiply Operand(type=Constant, name=features.6.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_53452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2932,11 +2932,11 @@ Multiply Operand(type=Constant, name=features.7.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_64452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2962,11 +2962,11 @@ Multiply Operand(type=Constant, name=features.8.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_77452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2992,11 +2992,11 @@ Multiply Operand(type=Constant, name=features.9.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_90452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3022,11 +3022,11 @@ Multiply Operand(type=Constant, name=features.10.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_103452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3052,11 +3052,11 @@ Multiply Operand(type=Constant, name=features.11.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_116452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3082,11 +3082,11 @@ Multiply Operand(type=Constant, name=features.12.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_131452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3112,11 +3112,11 @@ Multiply Operand(type=Constant, name=features.13.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_146452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3142,11 +3142,11 @@ Multiply Operand(type=Constant, name=features.14.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_161452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3172,11 +3172,11 @@ Multiply Operand(type=Constant, name=features.15.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_176452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3202,11 +3202,11 @@ Multiply Operand(type=Constant, name=features.16.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_191452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/mobilenet_v3/pt_mobilenet_v3_small.md b/model_analysis_docs/Models/mobilenet_v3/pt_mobilenet_v3_small.md index fcf47477c..7a2fc41f4 100644 --- a/model_analysis_docs/Models/mobilenet_v3/pt_mobilenet_v3_small.md +++ b/model_analysis_docs/Models/mobilenet_v3/pt_mobilenet_v3_small.md @@ -292,11 +292,11 @@ Add Operand(type=Activation, shape=(1, 120, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_77680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -412,11 +412,11 @@ Add Operand(type=Activation, shape=(1, 16, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_8358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -462,11 +462,11 @@ Add Operand(type=Activation, shape=(1, 96, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_41358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -492,11 +492,11 @@ Add Operand(type=Activation, shape=(1, 240, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_56358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -542,11 +542,11 @@ Add Operand(type=Activation, shape=(1, 144, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_101358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -602,11 +602,11 @@ Add Operand(type=Activation, shape=(1, 288, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_116358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -642,11 +642,11 @@ Add Operand(type=Activation, shape=(1, 576, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_131358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1672,21 +1672,21 @@ Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 576), dtype=float32)
X
Operand(type=Activation, shape=(576, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2092,11 +2092,11 @@ Multiply Operand(type=Activation, shape=(1, 120, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_78680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2242,11 +2242,11 @@ Multiply Operand(type=Activation, shape=(1, 16, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_9358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2302,11 +2302,11 @@ Multiply Operand(type=Activation, shape=(1, 96, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_42358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2322,11 +2322,11 @@ Multiply Operand(type=Activation, shape=(1, 240, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_57358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2382,11 +2382,11 @@ Multiply Operand(type=Activation, shape=(1, 144, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_102358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2442,11 +2442,11 @@ Multiply Operand(type=Activation, shape=(1, 288, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_117358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2482,11 +2482,11 @@ Multiply Operand(type=Activation, shape=(1, 576, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_132358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2532,11 +2532,11 @@ Multiply Operand(type=Constant, name=features.3.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_22452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2562,11 +2562,11 @@ Multiply Operand(type=Constant, name=features.4.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_31452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2592,11 +2592,11 @@ Multiply Operand(type=Constant, name=features.5.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_42452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2622,11 +2622,11 @@ Multiply Operand(type=Constant, name=features.6.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_53452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2652,11 +2652,11 @@ Multiply Operand(type=Constant, name=features.7.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_64452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2672,11 +2672,11 @@ Multiply Operand(type=Constant, name=features.8.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_77452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2692,11 +2692,11 @@ Multiply Operand(type=Constant, name=features.9.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_90452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2712,11 +2712,11 @@ Multiply Operand(type=Constant, name=features.10.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_103452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2732,11 +2732,11 @@ Multiply Operand(type=Constant, name=features.11.block.0.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_116452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2872,11 +2872,11 @@ Multiply Operand(type=Constant, name=features.12.1.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_153358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/mobilenet_v3/pt_mobilenetv3_large_100.md b/model_analysis_docs/Models/mobilenet_v3/pt_mobilenetv3_large_100.md index 24fc02dba..1e517110b 100644 --- a/model_analysis_docs/Models/mobilenet_v3/pt_mobilenetv3_large_100.md +++ b/model_analysis_docs/Models/mobilenet_v3/pt_mobilenetv3_large_100.md @@ -412,11 +412,11 @@ Add Operand(type=Activation, shape=(1, 72, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_57680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -432,11 +432,11 @@ Add Operand(type=Activation, shape=(1, 120, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_77680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -462,11 +462,11 @@ Add Operand(type=Activation, shape=(1, 480, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_148680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -482,11 +482,11 @@ Add Operand(type=Activation, shape=(1, 672, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_168680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -512,11 +512,11 @@ Add Operand(type=Activation, shape=(1, 960, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_217680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1132,11 +1132,11 @@ Add Operand(type=Activation, shape=(1, 1280, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_194452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model AvgPool2d @@ -1752,11 +1752,11 @@ Matmul Operand(type=Activation, shape=(1, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2812,11 +2812,11 @@ Multiply Operand(type=Activation, shape=(1, 72, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_58680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2832,11 +2832,11 @@ Multiply Operand(type=Activation, shape=(1, 120, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_78680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2892,21 +2892,21 @@ Multiply Operand(type=Activation, shape=(1, 480, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_149680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply Operand(type=Activation, shape=(1, 672, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_169680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2922,11 +2922,11 @@ Multiply Operand(type=Activation, shape=(1, 960, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_218680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3152,11 +3152,11 @@ Multiply Operand(type=Activation, shape=(1, 1280, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_195452, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3324,9 +3324,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3344,9 +3344,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3364,9 +3364,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3384,9 +3384,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3404,9 +3404,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3424,9 +3424,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg diff --git a/model_analysis_docs/Models/mobilenet_v3/pt_mobilenetv3_small_100.md b/model_analysis_docs/Models/mobilenet_v3/pt_mobilenetv3_small_100.md index 9d3d2d2e1..55f272782 100644 --- a/model_analysis_docs/Models/mobilenet_v3/pt_mobilenetv3_small_100.md +++ b/model_analysis_docs/Models/mobilenet_v3/pt_mobilenetv3_small_100.md @@ -292,11 +292,11 @@ Add Operand(type=Activation, shape=(1, 120, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_77680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -742,11 +742,11 @@ Add Operand(type=Activation, shape=(1, 16, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_8358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -792,11 +792,11 @@ Add Operand(type=Activation, shape=(1, 96, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_41358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -822,11 +822,11 @@ Add Operand(type=Activation, shape=(1, 240, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_56358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -872,11 +872,11 @@ Add Operand(type=Activation, shape=(1, 144, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_101358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -932,11 +932,11 @@ Add Operand(type=Activation, shape=(1, 288, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_116358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -972,11 +972,11 @@ Add Operand(type=Activation, shape=(1, 576, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_131358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1002,11 +1002,11 @@ Add Operand(type=Activation, shape=(1, 1024, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_156358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model AvgPool2d @@ -1612,11 +1612,11 @@ Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2352,11 +2352,11 @@ Multiply Operand(type=Activation, shape=(1, 120, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_78680, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2502,11 +2502,11 @@ Multiply Operand(type=Activation, shape=(1, 16, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_9358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2572,11 +2572,11 @@ Multiply Operand(type=Activation, shape=(1, 96, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_42358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2602,11 +2602,11 @@ Multiply Operand(type=Activation, shape=(1, 240, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_57358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2672,11 +2672,11 @@ Multiply Operand(type=Activation, shape=(1, 144, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_102358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2742,11 +2742,11 @@ Multiply Operand(type=Activation, shape=(1, 288, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_117358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2792,11 +2792,11 @@ Multiply Operand(type=Activation, shape=(1, 576, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_132358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2812,11 +2812,11 @@ Multiply Operand(type=Activation, shape=(1, 1024, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_157358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2954,9 +2954,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -2974,9 +2974,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -2994,9 +2994,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3014,9 +3014,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3034,9 +3034,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3054,9 +3054,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3074,9 +3074,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -3822,11 +3822,11 @@ Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/monodle/pt_monodle.md b/model_analysis_docs/Models/monodle/pt_monodle.md index ef4117519..fdcbf6998 100644 --- a/model_analysis_docs/Models/monodle/pt_monodle.md +++ b/model_analysis_docs/Models/monodle/pt_monodle.md @@ -1133,40 +1133,40 @@ Operand(type=Activation, shape=(1, 32, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 256, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/nbeats/nbeats_seasonality.md b/model_analysis_docs/Models/nbeats/nbeats_seasonality.md index 601a8ec3e..8a443be47 100644 --- a/model_analysis_docs/Models/nbeats/nbeats_seasonality.md +++ b/model_analysis_docs/Models/nbeats/nbeats_seasonality.md @@ -142,21 +142,21 @@ Matmul Operand(type=Activation, shape=(1024, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1024, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 48), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/opt/pt_opt_125m_causal_lm.md b/model_analysis_docs/Models/opt/pt_opt_125m_causal_lm.md index 3d38cfa06..d691949b1 100644 --- a/model_analysis_docs/Models/opt/pt_opt_125m_causal_lm.md +++ b/model_analysis_docs/Models/opt/pt_opt_125m_causal_lm.md @@ -128,6 +128,36 @@ + + Cast + Operand(type=Activation, shape=(1, 256, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(50272, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(2050, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Clip Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32) @@ -150,23 +180,23 @@ Embedding - Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Parameter, shape=(50272, 768), dtype=float32) + Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Activation, shape=(50272, 768), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Embedding - Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Parameter, shape=(2050, 768), dtype=float32) + Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Activation, shape=(2050, 768), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Greater @@ -232,11 +262,11 @@ Matmul Operand(type=Activation, shape=(256, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -272,11 +302,11 @@ Matmul Operand(type=Activation, shape=(256, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/opt/pt_opt_125m_qa.md b/model_analysis_docs/Models/opt/pt_opt_125m_qa.md index d6abc553d..2b92c4711 100644 --- a/model_analysis_docs/Models/opt/pt_opt_125m_qa.md +++ b/model_analysis_docs/Models/opt/pt_opt_125m_qa.md @@ -138,6 +138,36 @@ + + Cast + Operand(type=Parameter, shape=(50272, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 32, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(2050, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Clip Operand(type=Activation, shape=(1, 1, 32, 32), dtype=float32) @@ -160,23 +190,23 @@ Embedding - Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Parameter, shape=(50272, 768), dtype=float32) + Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Activation, shape=(50272, 768), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Embedding - Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Parameter, shape=(2050, 768), dtype=float32) + Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Activation, shape=(2050, 768), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Greater @@ -284,9 +314,9 @@ ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -322,11 +352,11 @@ Matmul Operand(type=Activation, shape=(32, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/opt/pt_opt_125m_seq_cls.md b/model_analysis_docs/Models/opt/pt_opt_125m_seq_cls.md index 5734a8fbc..716374b8e 100644 --- a/model_analysis_docs/Models/opt/pt_opt_125m_seq_cls.md +++ b/model_analysis_docs/Models/opt/pt_opt_125m_seq_cls.md @@ -114,9 +114,9 @@ ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 Argmax @@ -148,6 +148,36 @@ + + Cast + Operand(type=Parameter, shape=(50272, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 32, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(2050, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Cast Operand(type=Activation, shape=(1, 32), dtype=uint1) @@ -190,23 +220,23 @@ Embedding - Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Parameter, shape=(50272, 768), dtype=float32) + Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Activation, shape=(50272, 768), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Embedding - Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Parameter, shape=(2050, 768), dtype=float32) + Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Activation, shape=(2050, 768), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Equal @@ -284,9 +314,9 @@ ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -322,11 +352,11 @@ Matmul Operand(type=Activation, shape=(32, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -412,11 +442,11 @@ Remainder Operand(type=Activation, shape=(1,), dtype=int32)
X
Operand(type=Constant, name=const_360, dtype=int32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model RepeatInterleave @@ -602,11 +632,11 @@ Subtract Operand(type=Activation, shape=(1,), dtype=int32)
X
Operand(type=Constant, name=const_350, dtype=int32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Transpose diff --git a/model_analysis_docs/Models/opt/pt_opt_1_3b_causal_lm.md b/model_analysis_docs/Models/opt/pt_opt_1_3b_causal_lm.md index 3055372dd..1db3aa3a1 100644 --- a/model_analysis_docs/Models/opt/pt_opt_1_3b_causal_lm.md +++ b/model_analysis_docs/Models/opt/pt_opt_1_3b_causal_lm.md @@ -128,6 +128,36 @@ + + Cast + Operand(type=Activation, shape=(1, 256, 2048), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(50272, 2048), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(2050, 2048), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Clip Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32) @@ -150,23 +180,23 @@ Embedding - Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Parameter, shape=(50272, 2048), dtype=float32) + Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Activation, shape=(50272, 2048), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Embedding - Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Parameter, shape=(2050, 2048), dtype=float32) + Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Activation, shape=(2050, 2048), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Greater @@ -232,11 +262,11 @@ Matmul Operand(type=Activation, shape=(256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -272,11 +302,11 @@ Matmul Operand(type=Activation, shape=(256, 8192), dtype=float32)
X
Operand(type=Activation, shape=(8192, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -430,8 +460,8 @@ Reshape - Operand(type=Activation, shape=(1, 32, 256, 64), dtype=float32) - shape : (32, 256, 64) + Operand(type=Activation, shape=(32, 256, 256), dtype=float32) + shape : (1, 32, 256, 256) ✅ ✅ ✅ @@ -440,8 +470,8 @@ Reshape - Operand(type=Activation, shape=(32, 256, 256), dtype=float32) - shape : (1, 32, 256, 256) + Operand(type=Activation, shape=(1, 32, 256, 256), dtype=float32) + shape : (32, 256, 256) ✅ ✅ ✅ @@ -450,8 +480,8 @@ Reshape - Operand(type=Activation, shape=(1, 32, 256, 256), dtype=float32) - shape : (32, 256, 256) + Operand(type=Activation, shape=(1, 32, 256, 64), dtype=float32) + shape : (32, 256, 64) ✅ ✅ ✅ diff --git a/model_analysis_docs/Models/opt/pt_opt_1_3b_qa.md b/model_analysis_docs/Models/opt/pt_opt_1_3b_qa.md index de0e304d7..9689ffe77 100644 --- a/model_analysis_docs/Models/opt/pt_opt_1_3b_qa.md +++ b/model_analysis_docs/Models/opt/pt_opt_1_3b_qa.md @@ -118,6 +118,36 @@ + + Cast + Operand(type=Parameter, shape=(50272, 2048), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 32, 2048), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(2050, 2048), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Cast Operand(type=Activation, shape=(1, 1, 32, 32), dtype=int64) @@ -160,23 +190,23 @@ Embedding - Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Parameter, shape=(50272, 2048), dtype=float32) + Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Activation, shape=(50272, 2048), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + � + Embedding - Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Parameter, shape=(2050, 2048), dtype=float32) + Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Activation, shape=(2050, 2048), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Greater @@ -282,11 +312,11 @@ Matmul Operand(type=Activation, shape=(32, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -322,11 +352,11 @@ Matmul Operand(type=Activation, shape=(32, 8192), dtype=float32)
X
Operand(type=Activation, shape=(8192, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/opt/pt_opt_1_3b_seq_cls.md b/model_analysis_docs/Models/opt/pt_opt_1_3b_seq_cls.md index e43423b32..7edad4833 100644 --- a/model_analysis_docs/Models/opt/pt_opt_1_3b_seq_cls.md +++ b/model_analysis_docs/Models/opt/pt_opt_1_3b_seq_cls.md @@ -114,9 +114,9 @@ ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 Argmax @@ -128,6 +128,36 @@ [FORGE][mlir generation failure] RuntimeError Generated MLIR module failed verification + + Cast + Operand(type=Parameter, shape=(50272, 2048), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 32, 2048), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(2050, 2048), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Cast Operand(type=Activation, shape=(1, 1, 32, 32), dtype=int64) @@ -190,23 +220,23 @@ Embedding - Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Parameter, shape=(50272, 2048), dtype=float32) + Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Activation, shape=(50272, 2048), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Embedding - Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Parameter, shape=(2050, 2048), dtype=float32) + Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Activation, shape=(2050, 2048), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Equal @@ -282,11 +312,11 @@ Matmul Operand(type=Activation, shape=(32, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -322,11 +352,11 @@ Matmul Operand(type=Activation, shape=(32, 8192), dtype=float32)
X
Operand(type=Activation, shape=(8192, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -412,11 +442,11 @@ Remainder Operand(type=Activation, shape=(1,), dtype=int32)
X
Operand(type=Constant, name=const_360, dtype=int32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model RepeatInterleave @@ -602,11 +632,11 @@ Subtract Operand(type=Activation, shape=(1,), dtype=int32)
X
Operand(type=Constant, name=const_350, dtype=int32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Transpose diff --git a/model_analysis_docs/Models/opt/pt_opt_350m_causal_lm.md b/model_analysis_docs/Models/opt/pt_opt_350m_causal_lm.md index 39166ce96..c49876afa 100644 --- a/model_analysis_docs/Models/opt/pt_opt_350m_causal_lm.md +++ b/model_analysis_docs/Models/opt/pt_opt_350m_causal_lm.md @@ -108,6 +108,16 @@ + + Cast + Operand(type=Activation, shape=(1, 256, 1024), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Cast Operand(type=Activation, shape=(1, 1, 256, 256), dtype=int64) @@ -128,6 +138,36 @@ + + Cast + Operand(type=Parameter, shape=(50272, 512), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(2050, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 256, 512), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Clip Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32) @@ -150,23 +190,23 @@ Embedding - Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Parameter, shape=(50272, 512), dtype=float32) + Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Activation, shape=(50272, 512), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Embedding - Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Parameter, shape=(2050, 1024), dtype=float32) + Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Activation, shape=(2050, 1024), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + � + Greater @@ -222,11 +262,11 @@ Matmul Operand(type=Activation, shape=(256, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -260,33 +300,33 @@ Matmul - Operand(type=Activation, shape=(1, 256, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 1024), dtype=float32) + Operand(type=Activation, shape=(256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul - Operand(type=Activation, shape=(256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) - - + Operand(type=Activation, shape=(1, 256, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 1024), dtype=float32) + ✅ + ✅ + ✅ - � Matmul Operand(type=Activation, shape=(256, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/opt/pt_opt_350m_qa.md b/model_analysis_docs/Models/opt/pt_opt_350m_qa.md index 7ba553471..8629744cf 100644 --- a/model_analysis_docs/Models/opt/pt_opt_350m_qa.md +++ b/model_analysis_docs/Models/opt/pt_opt_350m_qa.md @@ -138,6 +138,46 @@ + + Cast + Operand(type=Parameter, shape=(50272, 512), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 32, 512), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(2050, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 32, 1024), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Clip Operand(type=Activation, shape=(1, 1, 32, 32), dtype=float32) @@ -160,23 +200,23 @@ Embedding - Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Parameter, shape=(50272, 512), dtype=float32) + Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Activation, shape=(50272, 512), dtype=bfloat16) + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + � + Embedding - Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Parameter, shape=(2050, 1024), dtype=float32) + Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Activation, shape=(2050, 1024), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Greater @@ -282,11 +322,11 @@ Matmul Operand(type=Activation, shape=(32, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -322,21 +362,21 @@ Matmul Operand(type=Activation, shape=(32, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(32, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/opt/pt_opt_350m_seq_cls.md b/model_analysis_docs/Models/opt/pt_opt_350m_seq_cls.md index f2626c012..57535a95e 100644 --- a/model_analysis_docs/Models/opt/pt_opt_350m_seq_cls.md +++ b/model_analysis_docs/Models/opt/pt_opt_350m_seq_cls.md @@ -114,9 +114,9 @@ ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 Argmax @@ -148,6 +148,46 @@ + + Cast + Operand(type=Parameter, shape=(50272, 512), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 32, 512), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(2050, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 32, 1024), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Cast Operand(type=Activation, shape=(1, 32), dtype=uint1) @@ -190,23 +230,23 @@ Embedding - Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Parameter, shape=(50272, 512), dtype=float32) + Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Activation, shape=(50272, 512), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Embedding - Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Parameter, shape=(2050, 1024), dtype=float32) + Operand(type=Activation, shape=(1, 32), dtype=int64)
X
Operand(type=Activation, shape=(2050, 1024), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Equal @@ -282,11 +322,11 @@ Matmul Operand(type=Activation, shape=(32, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -322,21 +362,21 @@ Matmul Operand(type=Activation, shape=(32, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(32, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -422,11 +462,11 @@ Remainder Operand(type=Activation, shape=(1,), dtype=int32)
X
Operand(type=Constant, name=const_360, dtype=int32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model RepeatInterleave @@ -622,11 +662,11 @@ Subtract Operand(type=Activation, shape=(1,), dtype=int32)
X
Operand(type=Constant, name=const_350, dtype=int32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Transpose diff --git a/model_analysis_docs/Models/perceiverio/pt_vision_perceiver_conv.md b/model_analysis_docs/Models/perceiverio/pt_vision_perceiver_conv.md index 445ed5a84..a4c019aa3 100644 --- a/model_analysis_docs/Models/perceiverio/pt_vision_perceiver_conv.md +++ b/model_analysis_docs/Models/perceiverio/pt_vision_perceiver_conv.md @@ -232,21 +232,21 @@ Matmul Operand(type=Activation, shape=(1, 1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 512, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 322), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -272,11 +272,11 @@ Matmul Operand(type=Activation, shape=(1, 512, 3025), dtype=float32)
X
Operand(type=Activation, shape=(1, 3025, 322), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -292,21 +292,21 @@ Matmul Operand(type=Activation, shape=(1, 512, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(512, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -332,11 +332,11 @@ Matmul Operand(type=Activation, shape=(1, 1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1, 1024, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -352,21 +352,21 @@ Matmul Operand(type=Activation, shape=(1, 1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][ttnn.reshape] RuntimeError tt-metal/ttnn/cpp/ttnn/tensor/tensor_utils.cpp new_volume == old_volume Invalid arguments to reshape Multiply diff --git a/model_analysis_docs/Models/perceiverio/pt_vision_perceiver_fourier.md b/model_analysis_docs/Models/perceiverio/pt_vision_perceiver_fourier.md index f267db7c7..856615c09 100644 --- a/model_analysis_docs/Models/perceiverio/pt_vision_perceiver_fourier.md +++ b/model_analysis_docs/Models/perceiverio/pt_vision_perceiver_fourier.md @@ -192,31 +192,31 @@ Matmul Operand(type=Activation, shape=(1, 1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 512, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(512, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -242,11 +242,11 @@ Matmul Operand(type=Activation, shape=(1, 1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1, 1024, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -262,21 +262,21 @@ Matmul Operand(type=Activation, shape=(1, 1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 512, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 261), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -302,11 +302,11 @@ Matmul Operand(type=Activation, shape=(1, 512, 50176), dtype=float32)
X
Operand(type=Activation, shape=(1, 50176, 261), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][ttnn matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op.cpp (input_tensor_a.get_legacy_shape()[-1] / in0_tile_shape[1]) % program_config.in0_block_w == 0 Kt must be divisible by in0_block_w Matmul diff --git a/model_analysis_docs/Models/perceiverio/pt_vision_perceiver_learned.md b/model_analysis_docs/Models/perceiverio/pt_vision_perceiver_learned.md index abddc7443..8039040f1 100644 --- a/model_analysis_docs/Models/perceiverio/pt_vision_perceiver_learned.md +++ b/model_analysis_docs/Models/perceiverio/pt_vision_perceiver_learned.md @@ -222,31 +222,31 @@ Matmul Operand(type=Activation, shape=(1, 1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 512, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(512, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -272,11 +272,11 @@ Matmul Operand(type=Activation, shape=(1, 1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1, 1024, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -292,21 +292,21 @@ Matmul Operand(type=Activation, shape=(1, 1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 512, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -342,11 +342,11 @@ Matmul Operand(type=Activation, shape=(1, 512, 50176), dtype=float32)
X
Operand(type=Activation, shape=(1, 50176, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][ttnn matmul] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/matmul/device/matmul_op.cpp (input_tensor_a.get_legacy_shape()[-1] / in0_tile_shape[1]) % program_config.in0_block_w == 0 Kt must be divisible by in0_block_w Matmul diff --git a/model_analysis_docs/Models/phi2/pt_phi_2_causal_lm.md b/model_analysis_docs/Models/phi2/pt_phi_2_causal_lm.md index 0933393cf..115bc94dd 100644 --- a/model_analysis_docs/Models/phi2/pt_phi_2_causal_lm.md +++ b/model_analysis_docs/Models/phi2/pt_phi_2_causal_lm.md @@ -78,6 +78,26 @@ + + Cast + Operand(type=Activation, shape=(1, 256, 2560), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(51200, 2560), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 256, 16), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 16), dtype=float32) @@ -120,13 +140,13 @@ Embedding - Operand(type=Activation, shape=(1, 256), dtype=int32)
X
Operand(type=Parameter, shape=(51200, 2560), dtype=float32) + Operand(type=Activation, shape=(1, 256), dtype=int32)
X
Operand(type=Activation, shape=(51200, 2560), dtype=bfloat16) ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Gelu diff --git a/model_analysis_docs/Models/phi2/pt_phi_2_pytdml_causal_lm.md b/model_analysis_docs/Models/phi2/pt_phi_2_pytdml_causal_lm.md index 0933393cf..115bc94dd 100644 --- a/model_analysis_docs/Models/phi2/pt_phi_2_pytdml_causal_lm.md +++ b/model_analysis_docs/Models/phi2/pt_phi_2_pytdml_causal_lm.md @@ -78,6 +78,26 @@ + + Cast + Operand(type=Activation, shape=(1, 256, 2560), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(51200, 2560), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 256, 16), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 16), dtype=float32) @@ -120,13 +140,13 @@ Embedding - Operand(type=Activation, shape=(1, 256), dtype=int32)
X
Operand(type=Parameter, shape=(51200, 2560), dtype=float32) + Operand(type=Activation, shape=(1, 256), dtype=int32)
X
Operand(type=Activation, shape=(51200, 2560), dtype=bfloat16) ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Gelu diff --git a/model_analysis_docs/Models/phi2/pt_phi_2_pytdml_seq_cls.md b/model_analysis_docs/Models/phi2/pt_phi_2_pytdml_seq_cls.md index 420769fd5..a6bb6b44e 100644 --- a/model_analysis_docs/Models/phi2/pt_phi_2_pytdml_seq_cls.md +++ b/model_analysis_docs/Models/phi2/pt_phi_2_pytdml_seq_cls.md @@ -78,6 +78,26 @@ + + Cast + Operand(type=Parameter, shape=(51200, 2560), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 11, 2560), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 11, 16), dtype=float32)
X
Operand(type=Activation, shape=(1, 11, 16), dtype=float32) @@ -120,13 +140,13 @@ Embedding - Operand(type=Activation, shape=(1, 11), dtype=int64)
X
Operand(type=Parameter, shape=(51200, 2560), dtype=float32) + Operand(type=Activation, shape=(1, 11), dtype=int64)
X
Operand(type=Activation, shape=(51200, 2560), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Gelu @@ -234,9 +254,9 @@ ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -262,31 +282,31 @@ Matmul Operand(type=Activation, shape=(11, 2560), dtype=float32)
X
Operand(type=Activation, shape=(2560, 10240), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul Operand(type=Activation, shape=(1, 11, 10240), dtype=float32)
X
Operand(type=Activation, shape=(10240, 2560), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 11, 2560), dtype=float32)
X
Operand(type=Activation, shape=(2560, 2), dtype=float32) + ✅ + ✅ + ✅ - - � - Multiply diff --git a/model_analysis_docs/Models/phi2/pt_phi_2_pytdml_token_cls.md b/model_analysis_docs/Models/phi2/pt_phi_2_pytdml_token_cls.md index e371d8707..690de5296 100644 --- a/model_analysis_docs/Models/phi2/pt_phi_2_pytdml_token_cls.md +++ b/model_analysis_docs/Models/phi2/pt_phi_2_pytdml_token_cls.md @@ -78,6 +78,26 @@ + + Cast + Operand(type=Parameter, shape=(51200, 2560), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 12, 2560), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 12, 16), dtype=float32)
X
Operand(type=Activation, shape=(1, 12, 16), dtype=float32) @@ -120,13 +140,13 @@ Embedding - Operand(type=Activation, shape=(1, 12), dtype=int64)
X
Operand(type=Parameter, shape=(51200, 2560), dtype=float32) + Operand(type=Activation, shape=(1, 12), dtype=int64)
X
Operand(type=Activation, shape=(51200, 2560), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Gelu @@ -224,9 +244,9 @@ ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,31 +272,31 @@ Matmul Operand(type=Activation, shape=(12, 2560), dtype=float32)
X
Operand(type=Activation, shape=(2560, 10240), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 12, 10240), dtype=float32)
X
Operand(type=Activation, shape=(10240, 2560), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 12, 2560), dtype=float32)
X
Operand(type=Activation, shape=(2560, 2), dtype=float32) + ✅ + ✅ + ✅ - - � - Multiply diff --git a/model_analysis_docs/Models/phi2/pt_phi_2_seq_cls.md b/model_analysis_docs/Models/phi2/pt_phi_2_seq_cls.md index 420769fd5..a6bb6b44e 100644 --- a/model_analysis_docs/Models/phi2/pt_phi_2_seq_cls.md +++ b/model_analysis_docs/Models/phi2/pt_phi_2_seq_cls.md @@ -78,6 +78,26 @@ + + Cast + Operand(type=Parameter, shape=(51200, 2560), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 11, 2560), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 11, 16), dtype=float32)
X
Operand(type=Activation, shape=(1, 11, 16), dtype=float32) @@ -120,13 +140,13 @@ Embedding - Operand(type=Activation, shape=(1, 11), dtype=int64)
X
Operand(type=Parameter, shape=(51200, 2560), dtype=float32) + Operand(type=Activation, shape=(1, 11), dtype=int64)
X
Operand(type=Activation, shape=(51200, 2560), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Gelu @@ -234,9 +254,9 @@ ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -262,31 +282,31 @@ Matmul Operand(type=Activation, shape=(11, 2560), dtype=float32)
X
Operand(type=Activation, shape=(2560, 10240), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul Operand(type=Activation, shape=(1, 11, 10240), dtype=float32)
X
Operand(type=Activation, shape=(10240, 2560), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 11, 2560), dtype=float32)
X
Operand(type=Activation, shape=(2560, 2), dtype=float32) + ✅ + ✅ + ✅ - - � - Multiply diff --git a/model_analysis_docs/Models/phi2/pt_phi_2_token_cls.md b/model_analysis_docs/Models/phi2/pt_phi_2_token_cls.md index e371d8707..690de5296 100644 --- a/model_analysis_docs/Models/phi2/pt_phi_2_token_cls.md +++ b/model_analysis_docs/Models/phi2/pt_phi_2_token_cls.md @@ -78,6 +78,26 @@ + + Cast + Operand(type=Parameter, shape=(51200, 2560), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 12, 2560), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 12, 16), dtype=float32)
X
Operand(type=Activation, shape=(1, 12, 16), dtype=float32) @@ -120,13 +140,13 @@ Embedding - Operand(type=Activation, shape=(1, 12), dtype=int64)
X
Operand(type=Parameter, shape=(51200, 2560), dtype=float32) + Operand(type=Activation, shape=(1, 12), dtype=int64)
X
Operand(type=Activation, shape=(51200, 2560), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Gelu @@ -224,9 +244,9 @@ ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,31 +272,31 @@ Matmul Operand(type=Activation, shape=(12, 2560), dtype=float32)
X
Operand(type=Activation, shape=(2560, 10240), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 12, 10240), dtype=float32)
X
Operand(type=Activation, shape=(10240, 2560), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 12, 2560), dtype=float32)
X
Operand(type=Activation, shape=(2560, 2), dtype=float32) + ✅ + ✅ + ✅ - - � - Multiply diff --git a/model_analysis_docs/Models/qwen/pt_qwen_causal_lm.md b/model_analysis_docs/Models/qwen/pt_qwen_causal_lm.md index 0bbf3a2b4..81d9d8b21 100644 --- a/model_analysis_docs/Models/qwen/pt_qwen_causal_lm.md +++ b/model_analysis_docs/Models/qwen/pt_qwen_causal_lm.md @@ -68,6 +68,26 @@ + + Cast + Operand(type=Parameter, shape=(151936, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 6, 1024), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 6, 32), dtype=float32)
X
Operand(type=Activation, shape=(1, 6, 32), dtype=float32) @@ -100,13 +120,13 @@ Embedding - Operand(type=Activation, shape=(1, 6), dtype=int64)
X
Operand(type=Parameter, shape=(151936, 1024), dtype=float32) + Operand(type=Activation, shape=(1, 6), dtype=int64)
X
Operand(type=Activation, shape=(151936, 1024), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -152,11 +172,11 @@ Matmul Operand(type=Activation, shape=(6, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -192,11 +212,11 @@ Matmul Operand(type=Activation, shape=(1, 6, 2816), dtype=float32)
X
Operand(type=Activation, shape=(2816, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/qwen/pt_qwen_chat.md b/model_analysis_docs/Models/qwen/pt_qwen_chat.md index 2500cefbf..b4948d1b6 100644 --- a/model_analysis_docs/Models/qwen/pt_qwen_chat.md +++ b/model_analysis_docs/Models/qwen/pt_qwen_chat.md @@ -68,6 +68,26 @@ + + Cast + Operand(type=Parameter, shape=(151936, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 29, 1024), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 29, 32), dtype=float32)
X
Operand(type=Activation, shape=(1, 29, 32), dtype=float32) @@ -100,13 +120,13 @@ Embedding - Operand(type=Activation, shape=(1, 29), dtype=int64)
X
Operand(type=Parameter, shape=(151936, 1024), dtype=float32) + Operand(type=Activation, shape=(1, 29), dtype=int64)
X
Operand(type=Activation, shape=(151936, 1024), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -152,11 +172,11 @@ Matmul Operand(type=Activation, shape=(29, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -192,11 +212,11 @@ Matmul Operand(type=Activation, shape=(1, 29, 2816), dtype=float32)
X
Operand(type=Activation, shape=(2816, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_0_5B.md b/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_0_5B.md index 208caabe1..dd1ef810b 100644 --- a/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_0_5B.md +++ b/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_0_5B.md @@ -88,6 +88,26 @@ + + Cast + Operand(type=Parameter, shape=(151936, 896), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 35, 896), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 35, 32), dtype=float32)
X
Operand(type=Activation, shape=(1, 35, 32), dtype=float32) @@ -130,13 +150,13 @@ Embedding - Operand(type=Activation, shape=(1, 35), dtype=int64)
X
Operand(type=Parameter, shape=(151936, 896), dtype=float32) + Operand(type=Activation, shape=(1, 35), dtype=int64)
X
Operand(type=Activation, shape=(151936, 896), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -202,11 +222,11 @@ Matmul Operand(type=Activation, shape=(35, 896), dtype=float32)
X
Operand(type=Activation, shape=(896, 896), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -252,11 +272,11 @@ Matmul Operand(type=Activation, shape=(1, 35, 4864), dtype=float32)
X
Operand(type=Activation, shape=(4864, 896), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_1_5B.md b/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_1_5B.md index b86cb7929..12ed3e27b 100644 --- a/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_1_5B.md +++ b/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_1_5B.md @@ -88,6 +88,26 @@ + + Cast + Operand(type=Parameter, shape=(151936, 1536), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 35, 1536), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 35, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 35, 64), dtype=float32) @@ -130,13 +150,13 @@ Embedding - Operand(type=Activation, shape=(1, 35), dtype=int64)
X
Operand(type=Parameter, shape=(151936, 1536), dtype=float32) + Operand(type=Activation, shape=(1, 35), dtype=int64)
X
Operand(type=Activation, shape=(151936, 1536), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -190,23 +210,23 @@ Matmul - Operand(type=Activation, shape=(35, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 1536), dtype=float32) - - + Operand(type=Activation, shape=(1, 64, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32) + ✅ + ✅ + ✅ - � Matmul - Operand(type=Activation, shape=(1, 64, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32) + Operand(type=Activation, shape=(35, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 1536), dtype=float32) ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,11 +272,11 @@ Matmul Operand(type=Activation, shape=(1, 35, 8960), dtype=float32)
X
Operand(type=Activation, shape=(8960, 1536), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_1_5B_Instruct.md b/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_1_5B_Instruct.md index b86cb7929..12ed3e27b 100644 --- a/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_1_5B_Instruct.md +++ b/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_1_5B_Instruct.md @@ -88,6 +88,26 @@ + + Cast + Operand(type=Parameter, shape=(151936, 1536), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 35, 1536), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 35, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 35, 64), dtype=float32) @@ -130,13 +150,13 @@ Embedding - Operand(type=Activation, shape=(1, 35), dtype=int64)
X
Operand(type=Parameter, shape=(151936, 1536), dtype=float32) + Operand(type=Activation, shape=(1, 35), dtype=int64)
X
Operand(type=Activation, shape=(151936, 1536), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -190,23 +210,23 @@ Matmul - Operand(type=Activation, shape=(35, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 1536), dtype=float32) - - + Operand(type=Activation, shape=(1, 64, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32) + ✅ + ✅ + ✅ - � Matmul - Operand(type=Activation, shape=(1, 64, 1), dtype=float32)
X
Operand(type=Constant, name=const_10, dtype=float32) + Operand(type=Activation, shape=(35, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 1536), dtype=float32) ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,11 +272,11 @@ Matmul Operand(type=Activation, shape=(1, 35, 8960), dtype=float32)
X
Operand(type=Activation, shape=(8960, 1536), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_3B.md b/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_3B.md index 3354c462c..844ee79ca 100644 --- a/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_3B.md +++ b/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_3B.md @@ -88,6 +88,26 @@ + + Cast + Operand(type=Parameter, shape=(151936, 2048), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 35, 2048), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 35, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 35, 64), dtype=float32) @@ -130,13 +150,13 @@ Embedding - Operand(type=Activation, shape=(1, 35), dtype=int64)
X
Operand(type=Parameter, shape=(151936, 2048), dtype=float32) + Operand(type=Activation, shape=(1, 35), dtype=int64)
X
Operand(type=Activation, shape=(151936, 2048), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -202,11 +222,11 @@ Matmul Operand(type=Activation, shape=(35, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,11 +272,11 @@ Matmul Operand(type=Activation, shape=(1, 35, 11008), dtype=float32)
X
Operand(type=Activation, shape=(11008, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -610,7 +630,7 @@ Transpose - Operand(type=Activation, shape=(1, 64, 35), dtype=float32) + Operand(type=Parameter, shape=(256, 2048), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -620,8 +640,8 @@ Transpose - Operand(type=Activation, shape=(1, 35, 2, 128), dtype=float32) - dim0 : -3
dim1 : -2 + Operand(type=Activation, shape=(1, 64, 35), dtype=float32) + dim0 : -2
dim1 : -1 ✅ ✅ ✅ @@ -630,7 +650,7 @@ Transpose - Operand(type=Activation, shape=(1, 35, 16, 128), dtype=float32) + Operand(type=Activation, shape=(1, 35, 2, 128), dtype=float32) dim0 : -3
dim1 : -2 ✅ ✅ @@ -640,8 +660,8 @@ Transpose - Operand(type=Parameter, shape=(256, 2048), dtype=float32) - dim0 : -2
dim1 : -1 + Operand(type=Activation, shape=(1, 35, 16, 128), dtype=float32) + dim0 : -3
dim1 : -2 ✅ ✅ ✅ diff --git a/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_3B_Instruct.md b/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_3B_Instruct.md index 3354c462c..844ee79ca 100644 --- a/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_3B_Instruct.md +++ b/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_3B_Instruct.md @@ -88,6 +88,26 @@ + + Cast + Operand(type=Parameter, shape=(151936, 2048), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 35, 2048), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 35, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 35, 64), dtype=float32) @@ -130,13 +150,13 @@ Embedding - Operand(type=Activation, shape=(1, 35), dtype=int64)
X
Operand(type=Parameter, shape=(151936, 2048), dtype=float32) + Operand(type=Activation, shape=(1, 35), dtype=int64)
X
Operand(type=Activation, shape=(151936, 2048), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -202,11 +222,11 @@ Matmul Operand(type=Activation, shape=(35, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,11 +272,11 @@ Matmul Operand(type=Activation, shape=(1, 35, 11008), dtype=float32)
X
Operand(type=Activation, shape=(11008, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -610,7 +630,7 @@ Transpose - Operand(type=Activation, shape=(1, 64, 35), dtype=float32) + Operand(type=Parameter, shape=(256, 2048), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -620,8 +640,8 @@ Transpose - Operand(type=Activation, shape=(1, 35, 2, 128), dtype=float32) - dim0 : -3
dim1 : -2 + Operand(type=Activation, shape=(1, 64, 35), dtype=float32) + dim0 : -2
dim1 : -1 ✅ ✅ ✅ @@ -630,7 +650,7 @@ Transpose - Operand(type=Activation, shape=(1, 35, 16, 128), dtype=float32) + Operand(type=Activation, shape=(1, 35, 2, 128), dtype=float32) dim0 : -3
dim1 : -2 ✅ ✅ @@ -640,8 +660,8 @@ Transpose - Operand(type=Parameter, shape=(256, 2048), dtype=float32) - dim0 : -2
dim1 : -1 + Operand(type=Activation, shape=(1, 35, 16, 128), dtype=float32) + dim0 : -3
dim1 : -2 ✅ ✅ ✅ diff --git a/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_7B.md b/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_7B.md index ba9e7e75a..cb1019888 100644 --- a/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_7B.md +++ b/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_7B.md @@ -88,6 +88,26 @@ + + Cast + Operand(type=Parameter, shape=(152064, 3584), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 35, 3584), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 35, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 35, 64), dtype=float32) @@ -130,13 +150,13 @@ Embedding - Operand(type=Activation, shape=(1, 35), dtype=int64)
X
Operand(type=Parameter, shape=(152064, 3584), dtype=float32) + Operand(type=Activation, shape=(1, 35), dtype=int64)
X
Operand(type=Activation, shape=(152064, 3584), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -202,21 +222,21 @@ Matmul Operand(type=Activation, shape=(35, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 3584), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(35, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -242,31 +262,31 @@ Matmul Operand(type=Activation, shape=(35, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 18944), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 35, 18944), dtype=float32)
X
Operand(type=Activation, shape=(18944, 3584), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 35, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 152064), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_7B_Instruct.md b/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_7B_Instruct.md index ba9e7e75a..cb1019888 100644 --- a/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_7B_Instruct.md +++ b/model_analysis_docs/Models/qwen_coder/pt_Qwen_Qwen2_5_Coder_7B_Instruct.md @@ -88,6 +88,26 @@ + + Cast + Operand(type=Parameter, shape=(152064, 3584), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 35, 3584), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 35, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 35, 64), dtype=float32) @@ -130,13 +150,13 @@ Embedding - Operand(type=Activation, shape=(1, 35), dtype=int64)
X
Operand(type=Parameter, shape=(152064, 3584), dtype=float32) + Operand(type=Activation, shape=(1, 35), dtype=int64)
X
Operand(type=Activation, shape=(152064, 3584), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -202,21 +222,21 @@ Matmul Operand(type=Activation, shape=(35, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 3584), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(35, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -242,31 +262,31 @@ Matmul Operand(type=Activation, shape=(35, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 18944), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 35, 18944), dtype=float32)
X
Operand(type=Activation, shape=(18944, 3584), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 35, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 152064), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_0_5B.md b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_0_5B.md index 7027e226d..9889f13aa 100644 --- a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_0_5B.md +++ b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_0_5B.md @@ -88,6 +88,26 @@ + + Cast + Operand(type=Parameter, shape=(151936, 896), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 29, 896), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 29, 32), dtype=float32)
X
Operand(type=Activation, shape=(1, 29, 32), dtype=float32) @@ -130,13 +150,13 @@ Embedding - Operand(type=Activation, shape=(1, 29), dtype=int64)
X
Operand(type=Parameter, shape=(151936, 896), dtype=float32) + Operand(type=Activation, shape=(1, 29), dtype=int64)
X
Operand(type=Activation, shape=(151936, 896), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -202,11 +222,11 @@ Matmul Operand(type=Activation, shape=(29, 896), dtype=float32)
X
Operand(type=Activation, shape=(896, 896), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,11 +272,11 @@ Matmul Operand(type=Activation, shape=(1, 29, 4864), dtype=float32)
X
Operand(type=Activation, shape=(4864, 896), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_0_5B_Instruct.md b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_0_5B_Instruct.md index 7e59b51d8..aec29db59 100644 --- a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_0_5B_Instruct.md +++ b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_0_5B_Instruct.md @@ -88,6 +88,26 @@ + + Cast + Operand(type=Parameter, shape=(151936, 896), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 39, 896), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 39, 32), dtype=float32)
X
Operand(type=Activation, shape=(1, 39, 32), dtype=float32) @@ -130,13 +150,13 @@ Embedding - Operand(type=Activation, shape=(1, 39), dtype=int64)
X
Operand(type=Parameter, shape=(151936, 896), dtype=float32) + Operand(type=Activation, shape=(1, 39), dtype=int64)
X
Operand(type=Activation, shape=(151936, 896), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -202,11 +222,11 @@ Matmul Operand(type=Activation, shape=(39, 896), dtype=float32)
X
Operand(type=Activation, shape=(896, 896), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,11 +272,11 @@ Matmul Operand(type=Activation, shape=(1, 39, 4864), dtype=float32)
X
Operand(type=Activation, shape=(4864, 896), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_1_5B.md b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_1_5B.md index 4b615356d..202fda84a 100644 --- a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_1_5B.md +++ b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_1_5B.md @@ -88,6 +88,26 @@ + + Cast + Operand(type=Parameter, shape=(151936, 1536), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 29, 1536), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 29, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 29, 64), dtype=float32) @@ -130,13 +150,13 @@ Embedding - Operand(type=Activation, shape=(1, 29), dtype=int64)
X
Operand(type=Parameter, shape=(151936, 1536), dtype=float32) + Operand(type=Activation, shape=(1, 29), dtype=int64)
X
Operand(type=Activation, shape=(151936, 1536), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -202,11 +222,11 @@ Matmul Operand(type=Activation, shape=(29, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 1536), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,11 +272,11 @@ Matmul Operand(type=Activation, shape=(1, 29, 8960), dtype=float32)
X
Operand(type=Activation, shape=(8960, 1536), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_1_5B_Instruct.md b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_1_5B_Instruct.md index 5fe98a13f..46e7231d9 100644 --- a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_1_5B_Instruct.md +++ b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_1_5B_Instruct.md @@ -88,6 +88,26 @@ + + Cast + Operand(type=Parameter, shape=(151936, 1536), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 39, 1536), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 39, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 39, 64), dtype=float32) @@ -130,13 +150,13 @@ Embedding - Operand(type=Activation, shape=(1, 39), dtype=int64)
X
Operand(type=Parameter, shape=(151936, 1536), dtype=float32) + Operand(type=Activation, shape=(1, 39), dtype=int64)
X
Operand(type=Activation, shape=(151936, 1536), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -202,11 +222,11 @@ Matmul Operand(type=Activation, shape=(39, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 1536), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,11 +272,11 @@ Matmul Operand(type=Activation, shape=(1, 39, 8960), dtype=float32)
X
Operand(type=Activation, shape=(8960, 1536), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_3B.md b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_3B.md index 3117bbd24..97aad1e43 100644 --- a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_3B.md +++ b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_3B.md @@ -88,6 +88,26 @@ + + Cast + Operand(type=Parameter, shape=(151936, 2048), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 29, 2048), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 29, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 29, 64), dtype=float32) @@ -130,13 +150,13 @@ Embedding - Operand(type=Activation, shape=(1, 29), dtype=int64)
X
Operand(type=Parameter, shape=(151936, 2048), dtype=float32) + Operand(type=Activation, shape=(1, 29), dtype=int64)
X
Operand(type=Activation, shape=(151936, 2048), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -202,11 +222,11 @@ Matmul Operand(type=Activation, shape=(29, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,11 +272,11 @@ Matmul Operand(type=Activation, shape=(1, 29, 11008), dtype=float32)
X
Operand(type=Activation, shape=(11008, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_3B_Instruct.md b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_3B_Instruct.md index 230ed16ee..9448135bc 100644 --- a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_3B_Instruct.md +++ b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_3B_Instruct.md @@ -88,6 +88,26 @@ + + Cast + Operand(type=Parameter, shape=(151936, 2048), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 39, 2048), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 39, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 39, 64), dtype=float32) @@ -130,13 +150,13 @@ Embedding - Operand(type=Activation, shape=(1, 39), dtype=int64)
X
Operand(type=Parameter, shape=(151936, 2048), dtype=float32) + Operand(type=Activation, shape=(1, 39), dtype=int64)
X
Operand(type=Activation, shape=(151936, 2048), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -202,11 +222,11 @@ Matmul Operand(type=Activation, shape=(39, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -252,11 +272,11 @@ Matmul Operand(type=Activation, shape=(1, 39, 11008), dtype=float32)
X
Operand(type=Activation, shape=(11008, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_7B.md b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_7B.md index 3e24ab3d2..af2451056 100644 --- a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_7B.md +++ b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_7B.md @@ -88,6 +88,26 @@ + + Cast + Operand(type=Parameter, shape=(152064, 3584), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 29, 3584), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 29, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 29, 64), dtype=float32) @@ -130,13 +150,13 @@ Embedding - Operand(type=Activation, shape=(1, 29), dtype=int64)
X
Operand(type=Parameter, shape=(152064, 3584), dtype=float32) + Operand(type=Activation, shape=(1, 29), dtype=int64)
X
Operand(type=Activation, shape=(152064, 3584), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -202,21 +222,21 @@ Matmul Operand(type=Activation, shape=(29, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 3584), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(29, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -242,31 +262,31 @@ Matmul Operand(type=Activation, shape=(29, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 18944), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 29, 18944), dtype=float32)
X
Operand(type=Activation, shape=(18944, 3584), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 29, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 152064), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_7B_Instruct.md b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_7B_Instruct.md index a215bcddf..da6039202 100644 --- a/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_7B_Instruct.md +++ b/model_analysis_docs/Models/qwen_v2/pt_Qwen_Qwen2_5_7B_Instruct.md @@ -88,6 +88,26 @@ + + Cast + Operand(type=Parameter, shape=(152064, 3584), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 39, 3584), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Concatenate Operand(type=Activation, shape=(1, 39, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 39, 64), dtype=float32) @@ -130,13 +150,13 @@ Embedding - Operand(type=Activation, shape=(1, 39), dtype=int64)
X
Operand(type=Parameter, shape=(152064, 3584), dtype=float32) + Operand(type=Activation, shape=(1, 39), dtype=int64)
X
Operand(type=Activation, shape=(152064, 3584), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Identity @@ -202,21 +222,21 @@ Matmul Operand(type=Activation, shape=(39, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 3584), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(39, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -242,31 +262,31 @@ Matmul Operand(type=Activation, shape=(39, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 18944), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 39, 18944), dtype=float32)
X
Operand(type=Activation, shape=(18944, 3584), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 39, 3584), dtype=float32)
X
Operand(type=Activation, shape=(3584, 152064), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/rcnn/pt_rcnn.md b/model_analysis_docs/Models/rcnn/pt_rcnn.md index abe6a6c3b..059d96f5c 100644 --- a/model_analysis_docs/Models/rcnn/pt_rcnn.md +++ b/model_analysis_docs/Models/rcnn/pt_rcnn.md @@ -172,21 +172,21 @@ Matmul Operand(type=Activation, shape=(1, 9216), dtype=float32)
X
Operand(type=Activation, shape=(9216, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -202,31 +202,31 @@ MaxPool2d Operand(type=Activation, shape=(1, 192, 27, 27), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 256, 13, 13), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 64, 56, 56), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][ttnn.reshape] RuntimeError tt-metal/ttnn/cpp/ttnn/tensor/tensor_utils.cpp new_volume == old_volume Invalid arguments to reshape Relu diff --git a/model_analysis_docs/Models/regnet/pt_regnet_y_040.md b/model_analysis_docs/Models/regnet/pt_regnet_y_040.md index 2b2941292..8f9fb1ab5 100644 --- a/model_analysis_docs/Models/regnet/pt_regnet_y_040.md +++ b/model_analysis_docs/Models/regnet/pt_regnet_y_040.md @@ -1412,11 +1412,11 @@ Matmul Operand(type=Activation, shape=(1, 1088), dtype=float32)
X
Operand(type=Activation, shape=(1088, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -2902,11 +2902,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/resnet/pt_resnet50.md b/model_analysis_docs/Models/resnet/pt_resnet50.md index 9dfa66178..9b6b988b6 100644 --- a/model_analysis_docs/Models/resnet/pt_resnet50.md +++ b/model_analysis_docs/Models/resnet/pt_resnet50.md @@ -1022,21 +1022,21 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/resnet/pt_resnet50_timm.md b/model_analysis_docs/Models/resnet/pt_resnet50_timm.md index ad1a7c89f..6c95b14fc 100644 --- a/model_analysis_docs/Models/resnet/pt_resnet50_timm.md +++ b/model_analysis_docs/Models/resnet/pt_resnet50_timm.md @@ -1022,21 +1022,21 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/resnext/pt_resnext101_fb_wsl.md b/model_analysis_docs/Models/resnext/pt_resnext101_fb_wsl.md index ea9712d97..ce3201a6d 100644 --- a/model_analysis_docs/Models/resnext/pt_resnext101_fb_wsl.md +++ b/model_analysis_docs/Models/resnext/pt_resnext101_fb_wsl.md @@ -1442,21 +1442,21 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/resnext/pt_resnext101_osmr.md b/model_analysis_docs/Models/resnext/pt_resnext101_osmr.md index cab29bf46..dd7b2601a 100644 --- a/model_analysis_docs/Models/resnext/pt_resnext101_osmr.md +++ b/model_analysis_docs/Models/resnext/pt_resnext101_osmr.md @@ -1442,21 +1442,21 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/resnext/pt_resnext101_torchhub.md b/model_analysis_docs/Models/resnext/pt_resnext101_torchhub.md index ea9712d97..ce3201a6d 100644 --- a/model_analysis_docs/Models/resnext/pt_resnext101_torchhub.md +++ b/model_analysis_docs/Models/resnext/pt_resnext101_torchhub.md @@ -1442,21 +1442,21 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/resnext/pt_resnext14_osmr.md b/model_analysis_docs/Models/resnext/pt_resnext14_osmr.md index 1ecb1f26a..757c5d528 100644 --- a/model_analysis_docs/Models/resnext/pt_resnext14_osmr.md +++ b/model_analysis_docs/Models/resnext/pt_resnext14_osmr.md @@ -572,21 +572,21 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/resnext/pt_resnext26_osmr.md b/model_analysis_docs/Models/resnext/pt_resnext26_osmr.md index 279570087..4a8531bba 100644 --- a/model_analysis_docs/Models/resnext/pt_resnext26_osmr.md +++ b/model_analysis_docs/Models/resnext/pt_resnext26_osmr.md @@ -762,21 +762,21 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/resnext/pt_resnext50_osmr.md b/model_analysis_docs/Models/resnext/pt_resnext50_osmr.md index df9157fcc..1ae2dca75 100644 --- a/model_analysis_docs/Models/resnext/pt_resnext50_osmr.md +++ b/model_analysis_docs/Models/resnext/pt_resnext50_osmr.md @@ -1002,21 +1002,21 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/resnext/pt_resnext50_torchhub.md b/model_analysis_docs/Models/resnext/pt_resnext50_torchhub.md index ffe12427d..e8be4de6f 100644 --- a/model_analysis_docs/Models/resnext/pt_resnext50_torchhub.md +++ b/model_analysis_docs/Models/resnext/pt_resnext50_torchhub.md @@ -1002,21 +1002,21 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/retinanet/pt_retinanet_rn101fpn.md b/model_analysis_docs/Models/retinanet/pt_retinanet_rn101fpn.md index 98016c10d..3d23caf0d 100644 --- a/model_analysis_docs/Models/retinanet/pt_retinanet_rn101fpn.md +++ b/model_analysis_docs/Models/retinanet/pt_retinanet_rn101fpn.md @@ -1832,11 +1832,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 64, 240, 320), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/retinanet/pt_retinanet_rn152fpn.md b/model_analysis_docs/Models/retinanet/pt_retinanet_rn152fpn.md index b7e859f8f..04bc0d8d6 100644 --- a/model_analysis_docs/Models/retinanet/pt_retinanet_rn152fpn.md +++ b/model_analysis_docs/Models/retinanet/pt_retinanet_rn152fpn.md @@ -962,11 +962,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.7.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_1811238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -992,11 +992,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.8.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_1901238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1052,11 +1052,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.10.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2081238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1112,11 +1112,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.12.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2261238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1142,11 +1142,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.13.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2351238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1232,11 +1232,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.16.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2621238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1262,11 +1262,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.17.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2711238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1292,11 +1292,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.18.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2801238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1322,11 +1322,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.19.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2891238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1352,11 +1352,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.20.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_2981238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1382,11 +1382,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.21.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3071238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1412,11 +1412,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.22.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3161238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1442,11 +1442,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.23.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3251238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1472,11 +1472,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.24.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3341238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1502,11 +1502,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.25.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3431238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1532,11 +1532,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.26.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3521238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1562,11 +1562,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.27.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_3611238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1712,11 +1712,11 @@ Add Operand(type=Constant, name=backbones.ResNet152FPN.features.layer3.32.bn3.running_var, dtype=float32)
X
Operand(type=Constant, name=const_4061238, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -2342,11 +2342,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 64, 240, 320), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/retinanet/pt_retinanet_rn18fpn.md b/model_analysis_docs/Models/retinanet/pt_retinanet_rn18fpn.md index 316de85a3..42a7f24cb 100644 --- a/model_analysis_docs/Models/retinanet/pt_retinanet_rn18fpn.md +++ b/model_analysis_docs/Models/retinanet/pt_retinanet_rn18fpn.md @@ -802,11 +802,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 64, 240, 320), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/retinanet/pt_retinanet_rn34fpn.md b/model_analysis_docs/Models/retinanet/pt_retinanet_rn34fpn.md index a4e017e01..6b7c6363e 100644 --- a/model_analysis_docs/Models/retinanet/pt_retinanet_rn34fpn.md +++ b/model_analysis_docs/Models/retinanet/pt_retinanet_rn34fpn.md @@ -962,11 +962,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 64, 240, 320), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/retinanet/pt_retinanet_rn50fpn.md b/model_analysis_docs/Models/retinanet/pt_retinanet_rn50fpn.md index da90740ea..adb671d86 100644 --- a/model_analysis_docs/Models/retinanet/pt_retinanet_rn50fpn.md +++ b/model_analysis_docs/Models/retinanet/pt_retinanet_rn50fpn.md @@ -1322,11 +1322,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 64, 240, 320), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/roberta/pt_roberta_masked_lm.md b/model_analysis_docs/Models/roberta/pt_roberta_masked_lm.md index ee859f397..3d5cc4ab6 100644 --- a/model_analysis_docs/Models/roberta/pt_roberta_masked_lm.md +++ b/model_analysis_docs/Models/roberta/pt_roberta_masked_lm.md @@ -88,6 +88,16 @@ + + Cast + Operand(type=Activation, shape=(1, 128, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Cast Operand(type=Activation, shape=(1, 128), dtype=uint1) @@ -108,6 +118,36 @@ + + Cast + Operand(type=Parameter, shape=(1, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(514, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(250002, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + CumSum Operand(type=Activation, shape=(1, 128), dtype=int32) @@ -120,33 +160,33 @@ Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(1, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(1, 768), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(514, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(514, 768), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(250002, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(250002, 768), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Gelu @@ -196,7 +236,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -212,11 +252,11 @@ Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -242,11 +282,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -262,11 +302,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -282,11 +322,11 @@ Multiply Operand(type=Activation, shape=(1, 128), dtype=int32)
X
Operand(type=Activation, shape=(1, 128), dtype=int32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/roberta/pt_roberta_sentiment.md b/model_analysis_docs/Models/roberta/pt_roberta_sentiment.md index a443136e0..c13439e35 100644 --- a/model_analysis_docs/Models/roberta/pt_roberta_sentiment.md +++ b/model_analysis_docs/Models/roberta/pt_roberta_sentiment.md @@ -88,6 +88,16 @@ + + Cast + Operand(type=Activation, shape=(1, 128, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Cast Operand(type=Activation, shape=(1, 128), dtype=uint1) @@ -108,6 +118,36 @@ + + Cast + Operand(type=Parameter, shape=(50265, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(1, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(514, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + CumSum Operand(type=Activation, shape=(1, 128), dtype=int32) @@ -120,33 +160,33 @@ Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(50265, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(50265, 768), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(1, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(1, 768), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(514, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(514, 768), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Gelu @@ -206,7 +246,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Layernorm @@ -222,21 +262,21 @@ Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(128, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -272,11 +312,11 @@ Matmul Operand(type=Activation, shape=(1, 128, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -284,19 +324,19 @@ ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply Operand(type=Activation, shape=(1, 128), dtype=int32)
X
Operand(type=Activation, shape=(1, 128), dtype=int32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/segformer/pt_mit_b0.md b/model_analysis_docs/Models/segformer/pt_mit_b0.md index 442208aee..aeb61b130 100644 --- a/model_analysis_docs/Models/segformer/pt_mit_b0.md +++ b/model_analysis_docs/Models/segformer/pt_mit_b0.md @@ -822,11 +822,11 @@ Matmul Operand(type=Activation, shape=(1, 1024, 640), dtype=float32)
X
Operand(type=Activation, shape=(640, 160), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -934,14 +934,24 @@ dim : -2
keep_dim : True ✅ ✅ + ❌ + + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model + + + Reshape + Operand(type=Activation, shape=(1, 256, 4096), dtype=float32) + shape : (1, 256, 64, 64) + ✅ + ✅ ✅ Reshape - Operand(type=Parameter, shape=(128, 1, 3, 3), dtype=float32) - shape : (128, 1, 3, 3) + Operand(type=Activation, shape=(1, 32, 128, 128), dtype=float32) + shape : (1, 32, 16384, 1) ✅ ✅ ✅ @@ -950,8 +960,8 @@ Reshape - Operand(type=Parameter, shape=(256, 1, 3, 3), dtype=float32) - shape : (256, 1, 3, 3) + Operand(type=Parameter, shape=(128, 1, 3, 3), dtype=float32) + shape : (128, 1, 3, 3) ✅ ✅ ✅ @@ -960,8 +970,8 @@ Reshape - Operand(type=Parameter, shape=(1024, 1, 3, 3), dtype=float32) - shape : (1024, 1, 3, 3) + Operand(type=Parameter, shape=(256, 1, 3, 3), dtype=float32) + shape : (256, 1, 3, 3) ✅ ✅ ✅ @@ -970,8 +980,8 @@ Reshape - Operand(type=Activation, shape=(1, 32, 128, 128), dtype=float32) - shape : (1, 32, 16384, 1) + Operand(type=Parameter, shape=(1024, 1, 3, 3), dtype=float32) + shape : (1024, 1, 3, 3) ✅ ✅ ✅ @@ -1258,16 +1268,6 @@ - - Reshape - Operand(type=Activation, shape=(1, 256, 4096), dtype=float32) - shape : (1, 256, 64, 64) - ✅ - ✅ - ✅ - - - Reshape Operand(type=Activation, shape=(1, 256, 64, 64), dtype=float32) @@ -1748,6 +1748,16 @@ + + Transpose + Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + dim0 : -2
dim1 : -1 + ✅ + ✅ + ✅ + + + Transpose Operand(type=Activation, shape=(1, 32, 256), dtype=float32) @@ -1758,6 +1768,16 @@ + + Transpose + Operand(type=Activation, shape=(1, 32, 128, 128), dtype=float32) + dim0 : -2
dim1 : -1 + ✅ + ✅ + ✅ + + + Transpose Operand(type=Parameter, shape=(256, 256), dtype=float32) @@ -1878,16 +1898,6 @@ - - Transpose - Operand(type=Activation, shape=(1, 32, 128, 128), dtype=float32) - dim0 : -2
dim1 : -1 - ✅ - ✅ - ✅ - - - Transpose Operand(type=Activation, shape=(1, 64, 4096), dtype=float32) @@ -1928,16 +1938,6 @@ - - Transpose - Operand(type=Activation, shape=(1, 64, 256), dtype=float32) - dim0 : -2
dim1 : -1 - ✅ - ✅ - ✅ - - - Transpose Operand(type=Activation, shape=(1, 256, 2, 32), dtype=float32) @@ -2422,11 +2422,11 @@ Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/segformer/pt_mit_b1.md b/model_analysis_docs/Models/segformer/pt_mit_b1.md index 1f090510f..24a4c7a5b 100644 --- a/model_analysis_docs/Models/segformer/pt_mit_b1.md +++ b/model_analysis_docs/Models/segformer/pt_mit_b1.md @@ -632,11 +632,11 @@ Matmul Operand(type=Activation, shape=(1, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -832,11 +832,11 @@ Matmul Operand(type=Activation, shape=(1, 1024, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 320), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -882,11 +882,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -934,9 +934,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape @@ -1790,8 +1790,8 @@ Transpose - Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) - dim0 : -3
dim1 : -2 + Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + dim0 : -2
dim1 : -1 ✅ ✅ ✅ @@ -1800,8 +1800,8 @@ Transpose - Operand(type=Parameter, shape=(1000, 512), dtype=float32) - dim0 : -2
dim1 : -1 + Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) + dim0 : -3
dim1 : -2 ✅ ✅ ✅ @@ -1810,7 +1810,7 @@ Transpose - Operand(type=Parameter, shape=(64, 64), dtype=float32) + Operand(type=Parameter, shape=(1000, 512), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -1820,7 +1820,7 @@ Transpose - Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + Operand(type=Parameter, shape=(64, 64), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -2422,11 +2422,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/segformer/pt_mit_b2.md b/model_analysis_docs/Models/segformer/pt_mit_b2.md index 06e42cb6b..3fba1df11 100644 --- a/model_analysis_docs/Models/segformer/pt_mit_b2.md +++ b/model_analysis_docs/Models/segformer/pt_mit_b2.md @@ -632,11 +632,11 @@ Matmul Operand(type=Activation, shape=(1, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -832,11 +832,11 @@ Matmul Operand(type=Activation, shape=(1, 1024, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 320), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -882,11 +882,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -934,9 +934,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape @@ -1790,8 +1790,8 @@ Transpose - Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) - dim0 : -3
dim1 : -2 + Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + dim0 : -2
dim1 : -1 ✅ ✅ ✅ @@ -1800,8 +1800,8 @@ Transpose - Operand(type=Parameter, shape=(1000, 512), dtype=float32) - dim0 : -2
dim1 : -1 + Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) + dim0 : -3
dim1 : -2 ✅ ✅ ✅ @@ -1810,7 +1810,7 @@ Transpose - Operand(type=Parameter, shape=(64, 64), dtype=float32) + Operand(type=Parameter, shape=(1000, 512), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -1820,7 +1820,7 @@ Transpose - Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + Operand(type=Parameter, shape=(64, 64), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -2422,11 +2422,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/segformer/pt_mit_b3.md b/model_analysis_docs/Models/segformer/pt_mit_b3.md index 06a3188d9..8286f03e4 100644 --- a/model_analysis_docs/Models/segformer/pt_mit_b3.md +++ b/model_analysis_docs/Models/segformer/pt_mit_b3.md @@ -632,11 +632,11 @@ Matmul Operand(type=Activation, shape=(1, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -832,11 +832,11 @@ Matmul Operand(type=Activation, shape=(1, 1024, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 320), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -882,11 +882,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -934,9 +934,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape @@ -1790,8 +1790,8 @@ Transpose - Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) - dim0 : -3
dim1 : -2 + Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + dim0 : -2
dim1 : -1 ✅ ✅ ✅ @@ -1800,8 +1800,8 @@ Transpose - Operand(type=Parameter, shape=(1000, 512), dtype=float32) - dim0 : -2
dim1 : -1 + Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) + dim0 : -3
dim1 : -2 ✅ ✅ ✅ @@ -1810,7 +1810,7 @@ Transpose - Operand(type=Parameter, shape=(64, 64), dtype=float32) + Operand(type=Parameter, shape=(1000, 512), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -1820,7 +1820,7 @@ Transpose - Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + Operand(type=Parameter, shape=(64, 64), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -2422,11 +2422,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/segformer/pt_mit_b4.md b/model_analysis_docs/Models/segformer/pt_mit_b4.md index 791711e5a..7394a6d2e 100644 --- a/model_analysis_docs/Models/segformer/pt_mit_b4.md +++ b/model_analysis_docs/Models/segformer/pt_mit_b4.md @@ -632,11 +632,11 @@ Matmul Operand(type=Activation, shape=(1, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -832,11 +832,11 @@ Matmul Operand(type=Activation, shape=(1, 1024, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 320), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -882,11 +882,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -934,9 +934,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape @@ -1790,8 +1790,8 @@ Transpose - Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) - dim0 : -3
dim1 : -2 + Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + dim0 : -2
dim1 : -1 ✅ ✅ ✅ @@ -1800,8 +1800,8 @@ Transpose - Operand(type=Parameter, shape=(1000, 512), dtype=float32) - dim0 : -2
dim1 : -1 + Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) + dim0 : -3
dim1 : -2 ✅ ✅ ✅ @@ -1810,7 +1810,7 @@ Transpose - Operand(type=Parameter, shape=(64, 64), dtype=float32) + Operand(type=Parameter, shape=(1000, 512), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -1820,7 +1820,7 @@ Transpose - Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + Operand(type=Parameter, shape=(64, 64), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -2422,11 +2422,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/segformer/pt_mit_b5.md b/model_analysis_docs/Models/segformer/pt_mit_b5.md index fde1056cb..eb8457467 100644 --- a/model_analysis_docs/Models/segformer/pt_mit_b5.md +++ b/model_analysis_docs/Models/segformer/pt_mit_b5.md @@ -632,11 +632,11 @@ Matmul Operand(type=Activation, shape=(1, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -832,11 +832,11 @@ Matmul Operand(type=Activation, shape=(1, 1024, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 320), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -882,11 +882,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -934,9 +934,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape @@ -1790,8 +1790,8 @@ Transpose - Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) - dim0 : -3
dim1 : -2 + Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + dim0 : -2
dim1 : -1 ✅ ✅ ✅ @@ -1800,8 +1800,8 @@ Transpose - Operand(type=Parameter, shape=(1000, 512), dtype=float32) - dim0 : -2
dim1 : -1 + Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) + dim0 : -3
dim1 : -2 ✅ ✅ ✅ @@ -1810,7 +1810,7 @@ Transpose - Operand(type=Parameter, shape=(64, 64), dtype=float32) + Operand(type=Parameter, shape=(1000, 512), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -1820,7 +1820,7 @@ Transpose - Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + Operand(type=Parameter, shape=(64, 64), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -2422,11 +2422,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/segformer/pt_segformer_b0_finetuned_ade_512_512.md b/model_analysis_docs/Models/segformer/pt_segformer_b0_finetuned_ade_512_512.md index a4602fb88..a23cf9581 100644 --- a/model_analysis_docs/Models/segformer/pt_segformer_b0_finetuned_ade_512_512.md +++ b/model_analysis_docs/Models/segformer/pt_segformer_b0_finetuned_ade_512_512.md @@ -912,11 +912,11 @@ Matmul Operand(type=Activation, shape=(1, 1024, 640), dtype=float32)
X
Operand(type=Activation, shape=(640, 160), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -1120,8 +1120,8 @@ Reshape - Operand(type=Parameter, shape=(128, 1, 3, 3), dtype=float32) - shape : (128, 1, 3, 3) + Operand(type=Activation, shape=(1, 256, 4096), dtype=float32) + shape : (1, 256, 64, 64) ✅ ✅ ✅ @@ -1130,8 +1130,8 @@ Reshape - Operand(type=Parameter, shape=(256, 1, 3, 3), dtype=float32) - shape : (256, 1, 3, 3) + Operand(type=Activation, shape=(1, 32, 128, 128), dtype=float32) + shape : (1, 32, 16384, 1) ✅ ✅ ✅ @@ -1140,8 +1140,8 @@ Reshape - Operand(type=Parameter, shape=(1024, 1, 3, 3), dtype=float32) - shape : (1024, 1, 3, 3) + Operand(type=Parameter, shape=(128, 1, 3, 3), dtype=float32) + shape : (128, 1, 3, 3) ✅ ✅ ✅ @@ -1150,8 +1150,18 @@ Reshape - Operand(type=Activation, shape=(1, 32, 128, 128), dtype=float32) - shape : (1, 32, 16384, 1) + Operand(type=Parameter, shape=(256, 1, 3, 3), dtype=float32) + shape : (256, 1, 3, 3) + ✅ + ✅ + ✅ + + + + + Reshape + Operand(type=Parameter, shape=(1024, 1, 3, 3), dtype=float32) + shape : (1024, 1, 3, 3) ✅ ✅ ✅ @@ -1438,16 +1448,6 @@ - - Reshape - Operand(type=Activation, shape=(1, 256, 4096), dtype=float32) - shape : (1, 256, 64, 64) - ✅ - ✅ - ✅ - - - Reshape Operand(type=Activation, shape=(1, 256, 64, 64), dtype=float32) @@ -1988,6 +1988,16 @@ + + Transpose + Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + dim0 : -2
dim1 : -1 + ✅ + ✅ + ✅ + + + Transpose Operand(type=Activation, shape=(1, 32, 256), dtype=float32) @@ -1998,6 +2008,16 @@ + + Transpose + Operand(type=Activation, shape=(1, 32, 128, 128), dtype=float32) + dim0 : -2
dim1 : -1 + ✅ + ✅ + ✅ + + + Transpose Operand(type=Parameter, shape=(256, 256), dtype=float32) @@ -2118,16 +2138,6 @@ - - Transpose - Operand(type=Activation, shape=(1, 32, 128, 128), dtype=float32) - dim0 : -2
dim1 : -1 - ✅ - ✅ - ✅ - - - Transpose Operand(type=Activation, shape=(1, 64, 4096), dtype=float32) @@ -2168,16 +2178,6 @@ - - Transpose - Operand(type=Activation, shape=(1, 64, 256), dtype=float32) - dim0 : -2
dim1 : -1 - ✅ - ✅ - ✅ - - - Transpose Operand(type=Activation, shape=(1, 256, 2, 32), dtype=float32) @@ -2712,11 +2712,11 @@ Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/segformer/pt_segformer_b1_finetuned_ade_512_512.md b/model_analysis_docs/Models/segformer/pt_segformer_b1_finetuned_ade_512_512.md index ae050a6aa..fbd3a554f 100644 --- a/model_analysis_docs/Models/segformer/pt_segformer_b1_finetuned_ade_512_512.md +++ b/model_analysis_docs/Models/segformer/pt_segformer_b1_finetuned_ade_512_512.md @@ -912,11 +912,11 @@ Matmul Operand(type=Activation, shape=(1, 1024, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 320), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -962,11 +962,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -1148,6 +1148,16 @@ + + Reshape + Operand(type=Activation, shape=(1, 256, 4096), dtype=float32) + shape : (1, 256, 64, 64) + ✅ + ✅ + ✅ + + + Reshape Operand(type=Activation, shape=(256, 512), dtype=float32) @@ -1258,16 +1268,6 @@ - - Reshape - Operand(type=Activation, shape=(1, 256, 4096), dtype=float32) - shape : (1, 256, 64, 64) - ✅ - ✅ - ✅ - - - Reshape Operand(type=Activation, shape=(5, 1024, 256), dtype=float32) @@ -2030,8 +2030,8 @@ Transpose - Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) - dim0 : -3
dim1 : -2 + Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + dim0 : -2
dim1 : -1 ✅ ✅ ✅ @@ -2040,8 +2040,8 @@ Transpose - Operand(type=Parameter, shape=(64, 64), dtype=float32) - dim0 : -2
dim1 : -1 + Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) + dim0 : -3
dim1 : -2 ✅ ✅ ✅ @@ -2050,7 +2050,7 @@ Transpose - Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + Operand(type=Parameter, shape=(64, 64), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -2742,11 +2742,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/segformer/pt_segformer_b2_finetuned_ade_512_512.md b/model_analysis_docs/Models/segformer/pt_segformer_b2_finetuned_ade_512_512.md index 6a3366c2b..3195d92a0 100644 --- a/model_analysis_docs/Models/segformer/pt_segformer_b2_finetuned_ade_512_512.md +++ b/model_analysis_docs/Models/segformer/pt_segformer_b2_finetuned_ade_512_512.md @@ -932,11 +932,11 @@ Matmul Operand(type=Activation, shape=(1, 1024, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 320), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -982,11 +982,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -2080,8 +2080,8 @@ Transpose - Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) - dim0 : -3
dim1 : -2 + Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + dim0 : -2
dim1 : -1 ✅ ✅ ✅ @@ -2090,8 +2090,8 @@ Transpose - Operand(type=Parameter, shape=(64, 64), dtype=float32) - dim0 : -2
dim1 : -1 + Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) + dim0 : -3
dim1 : -2 ✅ ✅ ✅ @@ -2100,7 +2100,7 @@ Transpose - Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + Operand(type=Parameter, shape=(64, 64), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -2812,11 +2812,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/segformer/pt_segformer_b3_finetuned_ade_512_512.md b/model_analysis_docs/Models/segformer/pt_segformer_b3_finetuned_ade_512_512.md index 3b07bea2b..1da734159 100644 --- a/model_analysis_docs/Models/segformer/pt_segformer_b3_finetuned_ade_512_512.md +++ b/model_analysis_docs/Models/segformer/pt_segformer_b3_finetuned_ade_512_512.md @@ -932,11 +932,11 @@ Matmul Operand(type=Activation, shape=(1, 1024, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 320), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -982,11 +982,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -2080,8 +2080,8 @@ Transpose - Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) - dim0 : -3
dim1 : -2 + Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + dim0 : -2
dim1 : -1 ✅ ✅ ✅ @@ -2090,8 +2090,8 @@ Transpose - Operand(type=Parameter, shape=(64, 64), dtype=float32) - dim0 : -2
dim1 : -1 + Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) + dim0 : -3
dim1 : -2 ✅ ✅ ✅ @@ -2100,7 +2100,7 @@ Transpose - Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + Operand(type=Parameter, shape=(64, 64), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -2812,11 +2812,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/segformer/pt_segformer_b4_finetuned_ade_512_512.md b/model_analysis_docs/Models/segformer/pt_segformer_b4_finetuned_ade_512_512.md index 6a3366c2b..3195d92a0 100644 --- a/model_analysis_docs/Models/segformer/pt_segformer_b4_finetuned_ade_512_512.md +++ b/model_analysis_docs/Models/segformer/pt_segformer_b4_finetuned_ade_512_512.md @@ -932,11 +932,11 @@ Matmul Operand(type=Activation, shape=(1, 1024, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 320), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -982,11 +982,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -2080,8 +2080,8 @@ Transpose - Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) - dim0 : -3
dim1 : -2 + Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + dim0 : -2
dim1 : -1 ✅ ✅ ✅ @@ -2090,8 +2090,8 @@ Transpose - Operand(type=Parameter, shape=(64, 64), dtype=float32) - dim0 : -2
dim1 : -1 + Operand(type=Activation, shape=(1, 256, 8, 64), dtype=float32) + dim0 : -3
dim1 : -2 ✅ ✅ ✅ @@ -2100,7 +2100,7 @@ Transpose - Operand(type=Activation, shape=(1, 64, 256), dtype=float32) + Operand(type=Parameter, shape=(64, 64), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -2812,11 +2812,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/squeezebert/pt_squeezebert.md b/model_analysis_docs/Models/squeezebert/pt_squeezebert.md index 466b5ee62..c0a86c635 100644 --- a/model_analysis_docs/Models/squeezebert/pt_squeezebert.md +++ b/model_analysis_docs/Models/squeezebert/pt_squeezebert.md @@ -98,6 +98,46 @@ + + Cast + Operand(type=Activation, shape=(1, 128, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(2, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(512, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(30528, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Conv2d Operand(type=Activation, shape=(1, 768, 1, 128), dtype=float32)
X
Operand(type=Activation, shape=(768, 192, 1, 1), dtype=float32) @@ -132,6 +172,16 @@ Conv2d Operand(type=Activation, shape=(1, 3072, 1, 128), dtype=float32)
X
Operand(type=Activation, shape=(768, 768, 1, 1), dtype=float32) stride : [1, 1]
padding : [0, 0, 0, 0]
dilation : 1
groups : 4
channel_last : 0 + ✅ + ✅ + ❌ + + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model + + + Embedding + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(512, 768), dtype=bfloat16) + @@ -140,33 +190,23 @@ Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(512, 768), dtype=float32) + Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Activation, shape=(30528, 768), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 - - - Embedding - Operand(type=Activation, shape=(1, 128), dtype=int64)
X
Operand(type=Parameter, shape=(30528, 768), dtype=float32) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + � + Embedding - Operand(type=Constant, name=const_00, dtype=int64)
X
Operand(type=Parameter, shape=(2, 768), dtype=float32) + Operand(type=Constant, name=const_00, dtype=int64)
X
Operand(type=Activation, shape=(2, 768), dtype=bfloat16) + + - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 + � + Gelu @@ -226,7 +266,7 @@ ❌ ❌ - [FORGE][Runtime Data mismatch] RuntimeError Tensor data type mismatch: expected got + [FORGE][Runtime Datatype mismatch] RuntimeError Tensor data type mismatch: expected got Index @@ -252,11 +292,11 @@ Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -284,9 +324,9 @@ ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/ssd300_resnet50/pt_ssd300_resnet50.md b/model_analysis_docs/Models/ssd300_resnet50/pt_ssd300_resnet50.md index ee367410a..bdf7dbbad 100644 --- a/model_analysis_docs/Models/ssd300_resnet50/pt_ssd300_resnet50.md +++ b/model_analysis_docs/Models/ssd300_resnet50/pt_ssd300_resnet50.md @@ -1102,11 +1102,11 @@ Conv2d Operand(type=Activation, shape=(1, 1024, 38, 38), dtype=float32)
X
Operand(type=Parameter, shape=(16, 1024, 3, 3), dtype=float32) stride : [1, 1]
padding : [1, 1, 1, 1]
dilation : 1
groups : 1
channel_last : 0 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][tt-metal ncrisc build] RuntimeError tt-metal/tt_metal/impl/program/program.cpp Failed to generate binaries for reader_conv_activations_padded_with_halo_3x3_weights_v2 ncrisc build failed Conv2d @@ -1312,11 +1312,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 64, 150, 150), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/stereo/pt_musicgen_large.md b/model_analysis_docs/Models/stereo/pt_musicgen_large.md new file mode 100644 index 000000000..95b20992d --- /dev/null +++ b/model_analysis_docs/Models/stereo/pt_musicgen_large.md @@ -0,0 +1,1292 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AbsOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
AddOperand(type=Activation, shape=(2, 13, 1), dtype=float32)
X
Operand(type=Constant, name=const_2153, dtype=float32)
AddOperand(type=Activation, shape=(1, 12, 13, 13), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
AddOperand(type=Activation, shape=(2, 12, 13, 13), dtype=float32)
X
Operand(type=Activation, shape=(2, 12, 13, 13), dtype=float32)
AddOperand(type=Activation, shape=(2, 13, 768), dtype=float32)
X
Operand(type=Activation, shape=(2, 13, 768), dtype=float32)
AddOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
AddOperand(type=Activation, shape=(2, 1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 2048), dtype=float32)
AddOperand(type=Activation, shape=(2, 1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(1, 2048), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
AddOperand(type=Activation, shape=(2, 13, 2048), dtype=float32)
X
Operand(type=Parameter, shape=(2048,), dtype=float32)
AddOperand(type=Activation, shape=(2, 32, 1, 13), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
CastOperand(type=Parameter, shape=(32128, 768), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(2, 13, 768), dtype=bfloat16)dtype : torch.float32
CastOperand(type=Parameter, shape=(32, 12), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(13, 13, 12), dtype=bfloat16)dtype : torch.float32
CastOperand(type=Activation, shape=(2, 1, 1, 13), dtype=int64)dtype : torch.float32
CastOperand(type=Activation, shape=(2, 13, 1), dtype=int64)dtype : torch.float32
CastOperand(type=Activation, shape=(2, 1, 1, 13), dtype=uint1)dtype : torch.float32
CastOperand(type=Parameter, shape=(2049, 2048), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(2, 1, 2048), dtype=bfloat16)dtype : torch.float32
ClipOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)min : 0.0
max : 1.0
EmbeddingOperand(type=Activation, shape=(2, 13), dtype=int64)
X
Operand(type=Activation, shape=(32128, 768), dtype=bfloat16)
EmbeddingOperand(type=Constant, name=const_3153, dtype=int32)
X
Operand(type=Activation, shape=(32, 12), dtype=bfloat16)
EmbeddingOperand(type=Activation, shape=(2, 1), dtype=int64)
X
Operand(type=Activation, shape=(2049, 2048), dtype=bfloat16)
GeluOperand(type=Activation, shape=(2, 1, 8192), dtype=float32)approximate : "none"
GreaterOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
X
Operand(type=Constant, name=const_32153, dtype=float32)
[TT_METAL][ttnn elementwise binary] RuntimeError BinaryOpType cannot be mapped to BcastOpMath
IdentityOperand(type=Activation, shape=(2, 13, 768), dtype=float32)
IdentityOperand(type=Activation, shape=(2, 12, 13, 13), dtype=float32)
IdentityOperand(type=Activation, shape=(2, 13, 3072), dtype=float32)
IdentityOperand(type=Activation, shape=(2, 1, 2048), dtype=float32)
IdentityOperand(type=Activation, shape=(64, 1, 1), dtype=float32)
IdentityOperand(type=Activation, shape=(64, 1, 13), dtype=float32)
IdentityOperand(type=Activation, shape=(2, 1, 8192), dtype=float32)
IndexOperand(type=Activation, shape=(2, 4, 1), dtype=int64)dim : -2
start : 0
stop : 1
stride : 1
IndexOperand(type=Activation, shape=(2, 4, 1), dtype=int64)dim : -2
start : 1
stop : 2
stride : 1
IndexOperand(type=Activation, shape=(2, 4, 1), dtype=int64)dim : -2
start : 2
stop : 3
stride : 1
IndexOperand(type=Activation, shape=(2, 4, 1), dtype=int64)dim : -2
start : 3
stop : 4
stride : 1
IndexOperand(type=Parameter, shape=(2048, 2048), dtype=float32)dim : -2
start : 0
stop : 1
stride : 1
LayernormOperand(type=Activation, shape=(2, 1, 2048), dtype=float32)
X
Operand(type=Parameter, shape=(2048,), dtype=float32)
X
Operand(type=Parameter, shape=(2048,), dtype=float32)
dim : -1
epsilon : 1e-05
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(26, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32)
MatmulOperand(type=Activation, shape=(24, 13, 64), dtype=float32)
X
Operand(type=Activation, shape=(24, 64, 13), dtype=float32)
MatmulOperand(type=Activation, shape=(24, 13, 13), dtype=float32)
X
Operand(type=Activation, shape=(24, 13, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(26, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 3072), dtype=float32)
MatmulOperand(type=Activation, shape=(26, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(2, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(64, 1, 64), dtype=float32)
X
Operand(type=Activation, shape=(64, 64, 1), dtype=float32)
MatmulOperand(type=Activation, shape=(64, 1, 1), dtype=float32)
X
Operand(type=Activation, shape=(64, 1, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(26, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 2048), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(26, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(64, 1, 64), dtype=float32)
X
Operand(type=Activation, shape=(64, 64, 13), dtype=float32)
MatmulOperand(type=Activation, shape=(64, 1, 13), dtype=float32)
X
Operand(type=Activation, shape=(64, 13, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(2, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 8192), dtype=float32)
MatmulOperand(type=Activation, shape=(2, 8192), dtype=float32)
X
Operand(type=Activation, shape=(8192, 2048), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(2, 13, 768), dtype=float32)
X
Operand(type=Activation, shape=(2, 13, 768), dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 13, 768), dtype=float32)
X
Operand(type=Activation, shape=(2, 13, 1), dtype=float32)
MultiplyOperand(type=Parameter, shape=(768,), dtype=float32)
X
Operand(type=Activation, shape=(2, 13, 768), dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
X
Operand(type=Constant, name=const_5153, dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
MultiplyOperand(type=Constant, name=const_33153, dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 1, 2048), dtype=float32)
X
Operand(type=Constant, name=const_0153, dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 13, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2, 13, 1), dtype=float32)
ReciprocalOperand(type=Activation, shape=(2, 13, 1), dtype=float32)
ReduceAvgOperand(type=Activation, shape=(2, 13, 768), dtype=float32)dim : -1
keep_dim : True
ReluOperand(type=Activation, shape=(2, 13, 3072), dtype=float32)
RepeatInterleaveOperand(type=Activation, shape=(2, 1, 1, 13), dtype=int64)repeats : 1
dim : 1
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(2, 1, 1, 13), dtype=int64)repeats : 1
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(8, 1), dtype=int64)shape : (2, 4, 1)
ReshapeOperand(type=Activation, shape=(2, 1, 1), dtype=int64)shape : (2, 1)
ReshapeOperand(type=Activation, shape=(2, 13), dtype=int64)shape : (2, 13)
ReshapeOperand(type=Activation, shape=(2, 13, 768), dtype=float32)shape : (26, 768)
ReshapeOperand(type=Activation, shape=(26, 768), dtype=float32)shape : (2, 13, 12, 64)
ReshapeOperand(type=Activation, shape=(26, 768), dtype=float32)shape : (2, 13, 768)
ReshapeOperand(type=Activation, shape=(2, 12, 13, 64), dtype=float32)shape : (24, 13, 64)
ReshapeOperand(type=Activation, shape=(24, 13, 13), dtype=float32)shape : (2, 12, 13, 13)
ReshapeOperand(type=Activation, shape=(2, 12, 13, 13), dtype=float32)shape : (24, 13, 13)
ReshapeOperand(type=Activation, shape=(2, 12, 64, 13), dtype=float32)shape : (24, 64, 13)
ReshapeOperand(type=Activation, shape=(24, 13, 64), dtype=float32)shape : (2, 12, 13, 64)
ReshapeOperand(type=Activation, shape=(2, 13, 12, 64), dtype=float32)shape : (26, 768)
ReshapeOperand(type=Activation, shape=(26, 3072), dtype=float32)shape : (2, 13, 3072)
ReshapeOperand(type=Activation, shape=(2, 13, 3072), dtype=float32)shape : (26, 3072)
ReshapeOperand(type=Activation, shape=(2, 2048), dtype=float32)shape : (2, 1, 2048)
ReshapeOperand(type=Activation, shape=(2, 2048), dtype=float32)shape : (2, 1, 32, 64)
ReshapeOperand(type=Activation, shape=(2, 4, 1, 2048), dtype=float32)shape : (8, 1, 2048)
ReshapeOperand(type=Activation, shape=(1, 2048), dtype=float32)shape : (1, 2048)
ReshapeOperand(type=Activation, shape=(2, 1, 2048), dtype=float32)shape : (2, 2048)
ReshapeOperand(type=Activation, shape=(2, 1, 2048), dtype=float32)shape : (2, 1, 32, 64)
ReshapeOperand(type=Activation, shape=(2, 32, 1, 64), dtype=float32)shape : (64, 1, 64)
ReshapeOperand(type=Activation, shape=(64, 1, 64), dtype=float32)shape : (2, 32, 1, 64)
ReshapeOperand(type=Activation, shape=(2, 1, 32, 64), dtype=float32)shape : (2, 2048)
ReshapeOperand(type=Activation, shape=(26, 2048), dtype=float32)shape : (2, 13, 2048)
ReshapeOperand(type=Activation, shape=(26, 2048), dtype=float32)shape : (2, 13, 32, 64)
ReshapeOperand(type=Activation, shape=(2, 13, 2048), dtype=float32)shape : (26, 2048)
ReshapeOperand(type=Activation, shape=(2, 32, 13, 64), dtype=float32)shape : (64, 13, 64)
ReshapeOperand(type=Activation, shape=(64, 1, 13), dtype=float32)shape : (2, 32, 1, 13)
ReshapeOperand(type=Activation, shape=(2, 32, 1, 13), dtype=float32)shape : (64, 1, 13)
ReshapeOperand(type=Activation, shape=(2, 8192), dtype=float32)shape : (2, 1, 8192)[TT_METAL][ttmetal allocations] RuntimeError Statically allocated circular buffers
ReshapeOperand(type=Activation, shape=(2, 1, 8192), dtype=float32)shape : (2, 8192)[TT_METAL][ttmetal allocations] RuntimeError Statically allocated circular buffers
SoftmaxOperand(type=Activation, shape=(2, 12, 13, 13), dtype=float32)dim : -1
SoftmaxOperand(type=Activation, shape=(64, 1, 1), dtype=float32)dim : -1
SoftmaxOperand(type=Activation, shape=(64, 1, 13), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(2, 13, 1), dtype=float32)
StackOperand(type=Activation, shape=(2, 1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 2048), dtype=float32)
axis : -3
SubtractOperand(type=Constant, name=const_4153, dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
TransposeOperand(type=Parameter, shape=(768, 768), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 13, 12, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(24, 13, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(13, 13, 12), dtype=float32)dim0 : -3
dim1 : -1
TransposeOperand(type=Activation, shape=(12, 13, 13), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 12, 13, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 12, 13, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(24, 64, 13), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(3072, 768), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(768, 3072), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(2048, 2048), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 1, 32, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(64, 1, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(64, 64, 1), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 32, 1, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Parameter, shape=(2048, 768), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 13, 32, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(64, 13, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(64, 64, 13), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(8192, 2048), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(2048, 8192), dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Activation, shape=(12, 13, 13), dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(2, 13), dtype=int64)dim : 1
UnsqueezeOperand(type=Activation, shape=(2, 13), dtype=int64)dim : 2
UnsqueezeOperand(type=Activation, shape=(2, 1, 13), dtype=int64)dim : 2
diff --git a/model_analysis_docs/Models/stereo/pt_musicgen_medium.md b/model_analysis_docs/Models/stereo/pt_musicgen_medium.md new file mode 100644 index 000000000..6fa351039 --- /dev/null +++ b/model_analysis_docs/Models/stereo/pt_musicgen_medium.md @@ -0,0 +1,1322 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AbsOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
AddOperand(type=Activation, shape=(2, 13, 1), dtype=float32)
X
Operand(type=Constant, name=const_2153, dtype=float32)
AddOperand(type=Activation, shape=(1, 12, 13, 13), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
AddOperand(type=Activation, shape=(2, 12, 13, 13), dtype=float32)
X
Operand(type=Activation, shape=(2, 12, 13, 13), dtype=float32)
AddOperand(type=Activation, shape=(2, 13, 768), dtype=float32)
X
Operand(type=Activation, shape=(2, 13, 768), dtype=float32)
AddOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
AddOperand(type=Activation, shape=(2, 1, 1536), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1536), dtype=float32)
AddOperand(type=Activation, shape=(2, 1, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1, 1536), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
AddOperand(type=Activation, shape=(2, 13, 1536), dtype=float32)
X
Operand(type=Parameter, shape=(1536,), dtype=float32)
AddOperand(type=Activation, shape=(2, 24, 1, 13), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
CastOperand(type=Parameter, shape=(32128, 768), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(2, 13, 768), dtype=bfloat16)dtype : torch.float32
CastOperand(type=Parameter, shape=(32, 12), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(13, 13, 12), dtype=bfloat16)dtype : torch.float32
CastOperand(type=Activation, shape=(2, 1, 1, 13), dtype=int64)dtype : torch.float32
CastOperand(type=Activation, shape=(2, 13, 1), dtype=int64)dtype : torch.float32
CastOperand(type=Activation, shape=(2, 1, 1, 13), dtype=uint1)dtype : torch.float32
CastOperand(type=Parameter, shape=(2049, 1536), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(2, 1, 1536), dtype=bfloat16)dtype : torch.float32
ClipOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)min : 0.0
max : 1.0
EmbeddingOperand(type=Activation, shape=(2, 13), dtype=int64)
X
Operand(type=Activation, shape=(32128, 768), dtype=bfloat16)
EmbeddingOperand(type=Constant, name=const_3153, dtype=int32)
X
Operand(type=Activation, shape=(32, 12), dtype=bfloat16)
EmbeddingOperand(type=Activation, shape=(2, 1), dtype=int64)
X
Operand(type=Activation, shape=(2049, 1536), dtype=bfloat16)
GeluOperand(type=Activation, shape=(2, 1, 6144), dtype=float32)approximate : "none"
GreaterOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
X
Operand(type=Constant, name=const_32153, dtype=float32)
[TT_METAL][ttnn elementwise binary] RuntimeError BinaryOpType cannot be mapped to BcastOpMath
IdentityOperand(type=Activation, shape=(2, 13, 768), dtype=float32)
IdentityOperand(type=Activation, shape=(2, 12, 13, 13), dtype=float32)
IdentityOperand(type=Activation, shape=(2, 13, 3072), dtype=float32)
IdentityOperand(type=Activation, shape=(2, 1, 1536), dtype=float32)
IdentityOperand(type=Activation, shape=(48, 1, 1), dtype=float32)
IdentityOperand(type=Activation, shape=(48, 1, 13), dtype=float32)
IdentityOperand(type=Activation, shape=(2, 1, 6144), dtype=float32)
IndexOperand(type=Activation, shape=(2, 4, 1), dtype=int64)dim : -2
start : 0
stop : 1
stride : 1
IndexOperand(type=Activation, shape=(2, 4, 1), dtype=int64)dim : -2
start : 1
stop : 2
stride : 1
IndexOperand(type=Activation, shape=(2, 4, 1), dtype=int64)dim : -2
start : 2
stop : 3
stride : 1
IndexOperand(type=Activation, shape=(2, 4, 1), dtype=int64)dim : -2
start : 3
stop : 4
stride : 1
IndexOperand(type=Parameter, shape=(2048, 1536), dtype=float32)dim : -2
start : 0
stop : 1
stride : 1
LayernormOperand(type=Activation, shape=(2, 1, 1536), dtype=float32)
X
Operand(type=Parameter, shape=(1536,), dtype=float32)
X
Operand(type=Parameter, shape=(1536,), dtype=float32)
dim : -1
epsilon : 1e-05
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(26, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32)
MatmulOperand(type=Activation, shape=(24, 13, 64), dtype=float32)
X
Operand(type=Activation, shape=(24, 64, 13), dtype=float32)
MatmulOperand(type=Activation, shape=(24, 13, 13), dtype=float32)
X
Operand(type=Activation, shape=(24, 13, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(26, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 3072), dtype=float32)
MatmulOperand(type=Activation, shape=(26, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(2, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 1536), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(48, 1, 64), dtype=float32)
X
Operand(type=Activation, shape=(48, 64, 1), dtype=float32)
MatmulOperand(type=Activation, shape=(48, 1, 1), dtype=float32)
X
Operand(type=Activation, shape=(48, 1, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(26, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 1536), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(26, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 1536), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(48, 1, 64), dtype=float32)
X
Operand(type=Activation, shape=(48, 64, 13), dtype=float32)
MatmulOperand(type=Activation, shape=(48, 1, 13), dtype=float32)
X
Operand(type=Activation, shape=(48, 13, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(2, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 6144), dtype=float32)
MatmulOperand(type=Activation, shape=(2, 6144), dtype=float32)
X
Operand(type=Activation, shape=(6144, 1536), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(2, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 2048), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(2, 13, 768), dtype=float32)
X
Operand(type=Activation, shape=(2, 13, 768), dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 13, 768), dtype=float32)
X
Operand(type=Activation, shape=(2, 13, 1), dtype=float32)
MultiplyOperand(type=Parameter, shape=(768,), dtype=float32)
X
Operand(type=Activation, shape=(2, 13, 768), dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
X
Operand(type=Constant, name=const_5153, dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
MultiplyOperand(type=Constant, name=const_33153, dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 1, 1536), dtype=float32)
X
Operand(type=Constant, name=const_0153, dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 13, 1536), dtype=float32)
X
Operand(type=Activation, shape=(2, 13, 1), dtype=float32)
ReciprocalOperand(type=Activation, shape=(2, 13, 1), dtype=float32)
ReduceAvgOperand(type=Activation, shape=(2, 13, 768), dtype=float32)dim : -1
keep_dim : True
ReluOperand(type=Activation, shape=(2, 13, 3072), dtype=float32)
RepeatInterleaveOperand(type=Activation, shape=(2, 1, 1, 13), dtype=int64)repeats : 1
dim : 1
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(2, 1, 1, 13), dtype=int64)repeats : 1
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(8, 1), dtype=int64)shape : (2, 4, 1)
ReshapeOperand(type=Activation, shape=(2, 1, 1), dtype=int64)shape : (2, 1)
ReshapeOperand(type=Activation, shape=(2, 13), dtype=int64)shape : (2, 13)
ReshapeOperand(type=Activation, shape=(2, 13, 768), dtype=float32)shape : (26, 768)
ReshapeOperand(type=Activation, shape=(26, 768), dtype=float32)shape : (2, 13, 12, 64)
ReshapeOperand(type=Activation, shape=(26, 768), dtype=float32)shape : (2, 13, 768)
ReshapeOperand(type=Activation, shape=(2, 12, 13, 64), dtype=float32)shape : (24, 13, 64)
ReshapeOperand(type=Activation, shape=(24, 13, 13), dtype=float32)shape : (2, 12, 13, 13)
ReshapeOperand(type=Activation, shape=(2, 12, 13, 13), dtype=float32)shape : (24, 13, 13)
ReshapeOperand(type=Activation, shape=(2, 12, 64, 13), dtype=float32)shape : (24, 64, 13)
ReshapeOperand(type=Activation, shape=(24, 13, 64), dtype=float32)shape : (2, 12, 13, 64)
ReshapeOperand(type=Activation, shape=(2, 13, 12, 64), dtype=float32)shape : (26, 768)
ReshapeOperand(type=Activation, shape=(26, 3072), dtype=float32)shape : (2, 13, 3072)
ReshapeOperand(type=Activation, shape=(2, 13, 3072), dtype=float32)shape : (26, 3072)
ReshapeOperand(type=Activation, shape=(2, 2048), dtype=float32)shape : (2, 1, 2048)
ReshapeOperand(type=Activation, shape=(2, 4, 1, 2048), dtype=float32)shape : (8, 1, 2048)
ReshapeOperand(type=Activation, shape=(1, 1536), dtype=float32)shape : (1, 1536)
ReshapeOperand(type=Activation, shape=(2, 1, 1536), dtype=float32)shape : (2, 1536)
ReshapeOperand(type=Activation, shape=(2, 1, 1536), dtype=float32)shape : (2, 1, 24, 64)
ReshapeOperand(type=Activation, shape=(2, 1536), dtype=float32)shape : (2, 1, 1536)
ReshapeOperand(type=Activation, shape=(2, 1536), dtype=float32)shape : (2, 1, 24, 64)
ReshapeOperand(type=Activation, shape=(2, 24, 1, 64), dtype=float32)shape : (48, 1, 64)
ReshapeOperand(type=Activation, shape=(48, 1, 64), dtype=float32)shape : (2, 24, 1, 64)
ReshapeOperand(type=Activation, shape=(2, 1, 24, 64), dtype=float32)shape : (2, 1536)
ReshapeOperand(type=Activation, shape=(26, 1536), dtype=float32)shape : (2, 13, 1536)
ReshapeOperand(type=Activation, shape=(26, 1536), dtype=float32)shape : (2, 13, 24, 64)
ReshapeOperand(type=Activation, shape=(2, 13, 1536), dtype=float32)shape : (26, 1536)
ReshapeOperand(type=Activation, shape=(2, 24, 13, 64), dtype=float32)shape : (48, 13, 64)
ReshapeOperand(type=Activation, shape=(48, 1, 13), dtype=float32)shape : (2, 24, 1, 13)
ReshapeOperand(type=Activation, shape=(2, 24, 1, 13), dtype=float32)shape : (48, 1, 13)
ReshapeOperand(type=Activation, shape=(2, 6144), dtype=float32)shape : (2, 1, 6144)[TT_METAL][ttmetal allocations] RuntimeError Statically allocated circular buffers
ReshapeOperand(type=Activation, shape=(2, 1, 6144), dtype=float32)shape : (2, 6144)[TT_METAL][ttmetal allocations] RuntimeError Statically allocated circular buffers
SoftmaxOperand(type=Activation, shape=(2, 12, 13, 13), dtype=float32)dim : -1
SoftmaxOperand(type=Activation, shape=(48, 1, 1), dtype=float32)dim : -1
SoftmaxOperand(type=Activation, shape=(48, 1, 13), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(2, 13, 1), dtype=float32)
StackOperand(type=Activation, shape=(2, 1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 2048), dtype=float32)
axis : -3
SubtractOperand(type=Constant, name=const_4153, dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
TransposeOperand(type=Parameter, shape=(768, 768), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 13, 12, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(24, 13, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(13, 13, 12), dtype=float32)dim0 : -3
dim1 : -1
TransposeOperand(type=Activation, shape=(12, 13, 13), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 12, 13, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 12, 13, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(24, 64, 13), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(3072, 768), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(768, 3072), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(1536, 1536), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 1, 24, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(48, 1, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(48, 64, 1), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 24, 1, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Parameter, shape=(1536, 768), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 13, 24, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(48, 13, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(48, 64, 13), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(6144, 1536), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(1536, 6144), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(2048, 1536), dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Activation, shape=(12, 13, 13), dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(2, 13), dtype=int64)dim : 1
UnsqueezeOperand(type=Activation, shape=(2, 13), dtype=int64)dim : 2
UnsqueezeOperand(type=Activation, shape=(2, 1, 13), dtype=int64)dim : 2
diff --git a/model_analysis_docs/Models/stereo/pt_musicgen_small.md b/model_analysis_docs/Models/stereo/pt_musicgen_small.md new file mode 100644 index 000000000..0604560e6 --- /dev/null +++ b/model_analysis_docs/Models/stereo/pt_musicgen_small.md @@ -0,0 +1,1322 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AbsOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
AddOperand(type=Activation, shape=(2, 1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1024), dtype=float32)
AddOperand(type=Activation, shape=(2, 1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1, 1024), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
AddOperand(type=Activation, shape=(2, 13, 1), dtype=float32)
X
Operand(type=Constant, name=const_2153, dtype=float32)
AddOperand(type=Activation, shape=(1, 12, 13, 13), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
AddOperand(type=Activation, shape=(2, 12, 13, 13), dtype=float32)
X
Operand(type=Activation, shape=(2, 12, 13, 13), dtype=float32)
AddOperand(type=Activation, shape=(2, 13, 768), dtype=float32)
X
Operand(type=Activation, shape=(2, 13, 768), dtype=float32)
AddOperand(type=Activation, shape=(2, 13, 1024), dtype=float32)
X
Operand(type=Parameter, shape=(1024,), dtype=float32)
AddOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
AddOperand(type=Activation, shape=(2, 16, 1, 13), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
CastOperand(type=Parameter, shape=(2049, 1024), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(2, 1, 1024), dtype=bfloat16)dtype : torch.float32
CastOperand(type=Parameter, shape=(32128, 768), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(2, 13, 768), dtype=bfloat16)dtype : torch.float32
CastOperand(type=Parameter, shape=(32, 12), dtype=float32)dtype : torch.bfloat16
CastOperand(type=Activation, shape=(13, 13, 12), dtype=bfloat16)dtype : torch.float32
CastOperand(type=Activation, shape=(2, 1, 1, 13), dtype=int64)dtype : torch.float32
CastOperand(type=Activation, shape=(2, 13, 1), dtype=int64)dtype : torch.float32
CastOperand(type=Activation, shape=(2, 1, 1, 13), dtype=uint1)dtype : torch.float32
ClipOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)min : 0.0
max : 1.0
EmbeddingOperand(type=Activation, shape=(2, 1), dtype=int64)
X
Operand(type=Activation, shape=(2049, 1024), dtype=bfloat16)
EmbeddingOperand(type=Activation, shape=(2, 13), dtype=int64)
X
Operand(type=Activation, shape=(32128, 768), dtype=bfloat16)
EmbeddingOperand(type=Constant, name=const_3153, dtype=int32)
X
Operand(type=Activation, shape=(32, 12), dtype=bfloat16)
GeluOperand(type=Activation, shape=(2, 1, 4096), dtype=float32)approximate : "none"
GreaterOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
X
Operand(type=Constant, name=const_32153, dtype=float32)
[TT_METAL][ttnn elementwise binary] RuntimeError BinaryOpType cannot be mapped to BcastOpMath
IdentityOperand(type=Activation, shape=(2, 1, 1024), dtype=float32)
IdentityOperand(type=Activation, shape=(32, 1, 1), dtype=float32)
IdentityOperand(type=Activation, shape=(2, 13, 768), dtype=float32)
IdentityOperand(type=Activation, shape=(2, 12, 13, 13), dtype=float32)
IdentityOperand(type=Activation, shape=(2, 13, 3072), dtype=float32)
IdentityOperand(type=Activation, shape=(32, 1, 13), dtype=float32)
IdentityOperand(type=Activation, shape=(2, 1, 4096), dtype=float32)
IndexOperand(type=Activation, shape=(2, 4, 1), dtype=int64)dim : -2
start : 0
stop : 1
stride : 1
IndexOperand(type=Activation, shape=(2, 4, 1), dtype=int64)dim : -2
start : 1
stop : 2
stride : 1
IndexOperand(type=Activation, shape=(2, 4, 1), dtype=int64)dim : -2
start : 2
stop : 3
stride : 1
IndexOperand(type=Activation, shape=(2, 4, 1), dtype=int64)dim : -2
start : 3
stop : 4
stride : 1
IndexOperand(type=Parameter, shape=(2048, 1024), dtype=float32)dim : -2
start : 0
stop : 1
stride : 1
LayernormOperand(type=Activation, shape=(2, 1, 1024), dtype=float32)
X
Operand(type=Parameter, shape=(1024,), dtype=float32)
X
Operand(type=Parameter, shape=(1024,), dtype=float32)
dim : -1
epsilon : 1e-05
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(2, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(32, 1, 64), dtype=float32)
X
Operand(type=Activation, shape=(32, 64, 1), dtype=float32)
MatmulOperand(type=Activation, shape=(32, 1, 1), dtype=float32)
X
Operand(type=Activation, shape=(32, 1, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(26, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32)
MatmulOperand(type=Activation, shape=(24, 13, 64), dtype=float32)
X
Operand(type=Activation, shape=(24, 64, 13), dtype=float32)
MatmulOperand(type=Activation, shape=(24, 13, 13), dtype=float32)
X
Operand(type=Activation, shape=(24, 13, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(26, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 3072), dtype=float32)
MatmulOperand(type=Activation, shape=(26, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(26, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 1024), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(26, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(32, 1, 64), dtype=float32)
X
Operand(type=Activation, shape=(32, 64, 13), dtype=float32)
MatmulOperand(type=Activation, shape=(32, 1, 13), dtype=float32)
X
Operand(type=Activation, shape=(32, 13, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(2, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 4096), dtype=float32)
MatmulOperand(type=Activation, shape=(2, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(2, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 2048), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(2, 1, 1024), dtype=float32)
X
Operand(type=Constant, name=const_0153, dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 13, 768), dtype=float32)
X
Operand(type=Activation, shape=(2, 13, 768), dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 13, 768), dtype=float32)
X
Operand(type=Activation, shape=(2, 13, 1), dtype=float32)
MultiplyOperand(type=Parameter, shape=(768,), dtype=float32)
X
Operand(type=Activation, shape=(2, 13, 768), dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
X
Operand(type=Constant, name=const_5153, dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 13, 1024), dtype=float32)
X
Operand(type=Activation, shape=(2, 13, 1), dtype=float32)
MultiplyOperand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
MultiplyOperand(type=Constant, name=const_33153, dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
ReciprocalOperand(type=Activation, shape=(2, 13, 1), dtype=float32)
ReduceAvgOperand(type=Activation, shape=(2, 13, 768), dtype=float32)dim : -1
keep_dim : True
ReluOperand(type=Activation, shape=(2, 13, 3072), dtype=float32)
RepeatInterleaveOperand(type=Activation, shape=(2, 1, 1, 13), dtype=int64)repeats : 1
dim : 1
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
RepeatInterleaveOperand(type=Activation, shape=(2, 1, 1, 13), dtype=int64)repeats : 1
dim : 2
[FORGE][lower_to_mlir] RuntimeError Found Unsupported operations while lowering from TTForge to TTIR in forward graph
ReshapeOperand(type=Activation, shape=(8, 1), dtype=int64)shape : (2, 4, 1)
ReshapeOperand(type=Activation, shape=(2, 1, 1), dtype=int64)shape : (2, 1)
ReshapeOperand(type=Activation, shape=(1, 1024), dtype=float32)shape : (1, 1024)
ReshapeOperand(type=Activation, shape=(2, 1, 1024), dtype=float32)shape : (2, 1024)
ReshapeOperand(type=Activation, shape=(2, 1, 1024), dtype=float32)shape : (2, 1, 16, 64)
ReshapeOperand(type=Activation, shape=(2, 1024), dtype=float32)shape : (2, 1, 1024)
ReshapeOperand(type=Activation, shape=(2, 1024), dtype=float32)shape : (2, 1, 16, 64)
ReshapeOperand(type=Activation, shape=(2, 16, 1, 64), dtype=float32)shape : (32, 1, 64)
ReshapeOperand(type=Activation, shape=(32, 1, 64), dtype=float32)shape : (2, 16, 1, 64)
ReshapeOperand(type=Activation, shape=(2, 1, 16, 64), dtype=float32)shape : (2, 1024)
ReshapeOperand(type=Activation, shape=(2, 13), dtype=int64)shape : (2, 13)
ReshapeOperand(type=Activation, shape=(2, 13, 768), dtype=float32)shape : (26, 768)
ReshapeOperand(type=Activation, shape=(26, 768), dtype=float32)shape : (2, 13, 12, 64)
ReshapeOperand(type=Activation, shape=(26, 768), dtype=float32)shape : (2, 13, 768)
ReshapeOperand(type=Activation, shape=(2, 12, 13, 64), dtype=float32)shape : (24, 13, 64)
ReshapeOperand(type=Activation, shape=(24, 13, 13), dtype=float32)shape : (2, 12, 13, 13)
ReshapeOperand(type=Activation, shape=(2, 12, 13, 13), dtype=float32)shape : (24, 13, 13)
ReshapeOperand(type=Activation, shape=(2, 12, 64, 13), dtype=float32)shape : (24, 64, 13)
ReshapeOperand(type=Activation, shape=(24, 13, 64), dtype=float32)shape : (2, 12, 13, 64)
ReshapeOperand(type=Activation, shape=(2, 13, 12, 64), dtype=float32)shape : (26, 768)
ReshapeOperand(type=Activation, shape=(26, 3072), dtype=float32)shape : (2, 13, 3072)
ReshapeOperand(type=Activation, shape=(2, 13, 3072), dtype=float32)shape : (26, 3072)
ReshapeOperand(type=Activation, shape=(26, 1024), dtype=float32)shape : (2, 13, 1024)
ReshapeOperand(type=Activation, shape=(26, 1024), dtype=float32)shape : (2, 13, 16, 64)
ReshapeOperand(type=Activation, shape=(2, 13, 1024), dtype=float32)shape : (26, 1024)
ReshapeOperand(type=Activation, shape=(2, 16, 13, 64), dtype=float32)shape : (32, 13, 64)
ReshapeOperand(type=Activation, shape=(32, 1, 13), dtype=float32)shape : (2, 16, 1, 13)
ReshapeOperand(type=Activation, shape=(2, 16, 1, 13), dtype=float32)shape : (32, 1, 13)
ReshapeOperand(type=Activation, shape=(2, 4096), dtype=float32)shape : (2, 1, 4096)
ReshapeOperand(type=Activation, shape=(2, 1, 4096), dtype=float32)shape : (2, 4096)
ReshapeOperand(type=Activation, shape=(2, 2048), dtype=float32)shape : (2, 1, 2048)
ReshapeOperand(type=Activation, shape=(2, 4, 1, 2048), dtype=float32)shape : (8, 1, 2048)
SoftmaxOperand(type=Activation, shape=(32, 1, 1), dtype=float32)dim : -1
SoftmaxOperand(type=Activation, shape=(2, 12, 13, 13), dtype=float32)dim : -1
SoftmaxOperand(type=Activation, shape=(32, 1, 13), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(2, 13, 1), dtype=float32)
StackOperand(type=Activation, shape=(2, 1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 2048), dtype=float32)
axis : -3
SubtractOperand(type=Constant, name=const_4153, dtype=float32)
X
Operand(type=Activation, shape=(2, 1, 1, 13), dtype=float32)
TransposeOperand(type=Parameter, shape=(1024, 1024), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 1, 16, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 1, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(32, 64, 1), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 16, 1, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Parameter, shape=(768, 768), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 13, 12, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(24, 13, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(13, 13, 12), dtype=float32)dim0 : -3
dim1 : -1
TransposeOperand(type=Activation, shape=(12, 13, 13), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 12, 13, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 12, 13, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(24, 64, 13), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(3072, 768), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(768, 3072), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(1024, 768), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(2, 13, 16, 64), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(32, 13, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(32, 64, 13), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(4096, 1024), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(1024, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(2048, 1024), dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Activation, shape=(12, 13, 13), dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(2, 13), dtype=int64)dim : 1
UnsqueezeOperand(type=Activation, shape=(2, 13), dtype=int64)dim : 2
UnsqueezeOperand(type=Activation, shape=(2, 1, 13), dtype=int64)dim : 2
diff --git a/model_analysis_docs/Models/swin/pt_swinv2_tiny_patch4_window8_256.md b/model_analysis_docs/Models/swin/pt_swinv2_tiny_patch4_window8_256.md new file mode 100644 index 000000000..2b605c714 --- /dev/null +++ b/model_analysis_docs/Models/swin/pt_swinv2_tiny_patch4_window8_256.md @@ -0,0 +1,3362 @@ +

Unique ops configuration and compiler support info

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Operation DetailsComponent Passing CheckIssues
NameOperandsArgumentsForge-FeMLIRMetaliumN/AFailure Reason
AbsOperand(type=Activation, shape=(64, 3, 64, 32), dtype=float32)
AbsOperand(type=Activation, shape=(16, 6, 64, 32), dtype=float32)
AbsOperand(type=Activation, shape=(4, 12, 64, 32), dtype=float32)
AbsOperand(type=Activation, shape=(1, 24, 64, 32), dtype=float32)
AddOperand(type=Activation, shape=(1, 1024, 768), dtype=float32)
X
Operand(type=Parameter, shape=(768,), dtype=float32)
AddOperand(type=Activation, shape=(1, 96, 64, 64), dtype=float32)
X
Operand(type=Activation, shape=(96, 1, 1), dtype=float32)
AddOperand(type=Activation, shape=(64, 64, 96), dtype=float32)
X
Operand(type=Parameter, shape=(96,), dtype=float32)
AddOperand(type=Activation, shape=(1, 15, 15, 512), dtype=float32)
X
Operand(type=Parameter, shape=(512,), dtype=float32)
AddOperand(type=Activation, shape=(64, 3, 64, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 3, 64, 64), dtype=float32)
AddOperand(type=Activation, shape=(1, 4096, 96), dtype=float32)
X
Operand(type=Activation, shape=(1, 4096, 96), dtype=float32)
AddOperand(type=Activation, shape=(1, 4096, 384), dtype=float32)
X
Operand(type=Parameter, shape=(384,), dtype=float32)
AddOperand(type=Activation, shape=(1, 4096, 96), dtype=float32)
X
Operand(type=Parameter, shape=(96,), dtype=float32)
AddOperand(type=Activation, shape=(1, 64, 3, 64, 64), dtype=float32)
X
Operand(type=Constant, name=const_20, dtype=float32)
AddOperand(type=Activation, shape=(16, 64, 192), dtype=float32)
X
Operand(type=Parameter, shape=(192,), dtype=float32)
AddOperand(type=Activation, shape=(16, 6, 64, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 6, 64, 64), dtype=float32)
AddOperand(type=Activation, shape=(1, 1024, 192), dtype=float32)
X
Operand(type=Activation, shape=(1, 1024, 192), dtype=float32)
AddOperand(type=Activation, shape=(1, 1024, 192), dtype=float32)
X
Operand(type=Parameter, shape=(192,), dtype=float32)
AddOperand(type=Activation, shape=(1, 16, 6, 64, 64), dtype=float32)
X
Operand(type=Constant, name=const_60, dtype=float32)
AddOperand(type=Activation, shape=(4, 64, 384), dtype=float32)
X
Operand(type=Parameter, shape=(384,), dtype=float32)
AddOperand(type=Activation, shape=(4, 12, 64, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 12, 64, 64), dtype=float32)
AddOperand(type=Activation, shape=(1, 256, 384), dtype=float32)
X
Operand(type=Activation, shape=(1, 256, 384), dtype=float32)
AddOperand(type=Activation, shape=(1, 256, 1536), dtype=float32)
X
Operand(type=Parameter, shape=(1536,), dtype=float32)
AddOperand(type=Activation, shape=(1, 256, 384), dtype=float32)
X
Operand(type=Parameter, shape=(384,), dtype=float32)
AddOperand(type=Activation, shape=(1, 4, 12, 64, 64), dtype=float32)
X
Operand(type=Constant, name=const_100, dtype=float32)
AddOperand(type=Activation, shape=(1, 64, 768), dtype=float32)
X
Operand(type=Parameter, shape=(768,), dtype=float32)
AddOperand(type=Activation, shape=(1, 24, 64, 64), dtype=float32)
X
Operand(type=Activation, shape=(1, 24, 64, 64), dtype=float32)
AddOperand(type=Activation, shape=(1, 64, 768), dtype=float32)
X
Operand(type=Activation, shape=(1, 64, 768), dtype=float32)
AddOperand(type=Activation, shape=(1, 64, 3072), dtype=float32)
X
Operand(type=Parameter, shape=(3072,), dtype=float32)
AddOperand(type=Activation, shape=(1, 3072, 8, 8), dtype=float32)
X
Operand(type=Activation, shape=(3072, 1, 1), dtype=float32)
AdvIndexOperand(type=Activation, shape=(225, 3), dtype=float32)
X
Operand(type=Activation, shape=(4096,), dtype=int64)
AdvIndexOperand(type=Activation, shape=(225, 6), dtype=float32)
X
Operand(type=Activation, shape=(4096,), dtype=int64)
AdvIndexOperand(type=Activation, shape=(225, 12), dtype=float32)
X
Operand(type=Activation, shape=(4096,), dtype=int64)
AdvIndexOperand(type=Activation, shape=(225, 24), dtype=float32)
X
Operand(type=Activation, shape=(4096,), dtype=int64)
BroadcastOperand(type=Activation, shape=(64, 3, 64, 1), dtype=float32)dim : -1
shape : 32
[FORGE][mlir generation failure] RuntimeError Generated MLIR module failed verification
BroadcastOperand(type=Activation, shape=(16, 6, 64, 1), dtype=float32)dim : -1
shape : 32
[FORGE][mlir generation failure] RuntimeError Generated MLIR module failed verification
BroadcastOperand(type=Activation, shape=(4, 12, 64, 1), dtype=float32)dim : -1
shape : 32
[FORGE][mlir generation failure] RuntimeError Generated MLIR module failed verification
BroadcastOperand(type=Activation, shape=(1, 24, 64, 1), dtype=float32)dim : -1
shape : 32
[FORGE][mlir generation failure] RuntimeError Generated MLIR module failed verification
ClipOperand(type=Activation, shape=(64, 3, 64, 1), dtype=float32)min : 1e-12
max : 3.4028234663852886e+38
ClipOperand(type=Parameter, shape=(3, 1, 1), dtype=float32)min : -3.4028234663852886e+38
max : 4.605170185988092
ClipOperand(type=Activation, shape=(16, 6, 64, 1), dtype=float32)min : 1e-12
max : 3.4028234663852886e+38
ClipOperand(type=Parameter, shape=(6, 1, 1), dtype=float32)min : -3.4028234663852886e+38
max : 4.605170185988092
ClipOperand(type=Activation, shape=(4, 12, 64, 1), dtype=float32)min : 1e-12
max : 3.4028234663852886e+38
ClipOperand(type=Parameter, shape=(12, 1, 1), dtype=float32)min : -3.4028234663852886e+38
max : 4.605170185988092
ClipOperand(type=Activation, shape=(1, 24, 64, 1), dtype=float32)min : 1e-12
max : 3.4028234663852886e+38
ClipOperand(type=Parameter, shape=(24, 1, 1), dtype=float32)min : -3.4028234663852886e+38
max : 4.605170185988092
ConcatenateOperand(type=Activation, shape=(1, 60, 64, 96), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 64, 96), dtype=float32)
axis : -3
ConcatenateOperand(type=Activation, shape=(1, 64, 60, 96), dtype=float32)
X
Operand(type=Activation, shape=(1, 64, 4, 96), dtype=float32)
axis : -2
ConcatenateOperand(type=Activation, shape=(1, 4, 64, 96), dtype=float32)
X
Operand(type=Activation, shape=(1, 60, 64, 96), dtype=float32)
axis : -3
ConcatenateOperand(type=Activation, shape=(1, 64, 4, 96), dtype=float32)
X
Operand(type=Activation, shape=(1, 64, 60, 96), dtype=float32)
axis : -2
ConcatenateOperand(type=Activation, shape=(1, 32, 32, 96), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 32, 96), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 32, 96), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 32, 96), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 28, 32, 192), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 32, 192), dtype=float32)
axis : -3
ConcatenateOperand(type=Activation, shape=(1, 32, 28, 192), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 4, 192), dtype=float32)
axis : -2
ConcatenateOperand(type=Activation, shape=(1, 4, 32, 192), dtype=float32)
X
Operand(type=Activation, shape=(1, 28, 32, 192), dtype=float32)
axis : -3
ConcatenateOperand(type=Activation, shape=(1, 32, 4, 192), dtype=float32)
X
Operand(type=Activation, shape=(1, 32, 28, 192), dtype=float32)
axis : -2
ConcatenateOperand(type=Activation, shape=(1, 16, 16, 192), dtype=float32)
X
Operand(type=Activation, shape=(1, 16, 16, 192), dtype=float32)
X
Operand(type=Activation, shape=(1, 16, 16, 192), dtype=float32)
X
Operand(type=Activation, shape=(1, 16, 16, 192), dtype=float32)
axis : -1
ConcatenateOperand(type=Activation, shape=(1, 12, 16, 384), dtype=float32)
X
Operand(type=Activation, shape=(1, 4, 16, 384), dtype=float32)
axis : -3
ConcatenateOperand(type=Activation, shape=(1, 16, 12, 384), dtype=float32)
X
Operand(type=Activation, shape=(1, 16, 4, 384), dtype=float32)
axis : -2
ConcatenateOperand(type=Activation, shape=(1, 4, 16, 384), dtype=float32)
X
Operand(type=Activation, shape=(1, 12, 16, 384), dtype=float32)
axis : -3
ConcatenateOperand(type=Activation, shape=(1, 16, 4, 384), dtype=float32)
X
Operand(type=Activation, shape=(1, 16, 12, 384), dtype=float32)
axis : -2
ConcatenateOperand(type=Activation, shape=(1, 8, 8, 384), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 8, 384), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 8, 384), dtype=float32)
X
Operand(type=Activation, shape=(1, 8, 8, 384), dtype=float32)
axis : -1
Conv2dOperand(type=Activation, shape=(1, 3, 256, 256), dtype=float32)
X
Operand(type=Parameter, shape=(96, 3, 4, 4), dtype=float32)
stride : [4, 4]
padding : [0, 0, 0, 0]
dilation : 1
groups : 1
channel_last : 0
Conv2dOperand(type=Activation, shape=(1, 768, 8, 8), dtype=float32)
X
Operand(type=Parameter, shape=(3072, 768, 1, 1), dtype=float32)
stride : [1, 1]
padding : [0, 0, 0, 0]
dilation : 1
groups : 1
channel_last : 0
ExpOperand(type=Activation, shape=(3, 1, 1), dtype=float32)
ExpOperand(type=Activation, shape=(6, 1, 1), dtype=float32)
ExpOperand(type=Activation, shape=(12, 1, 1), dtype=float32)
ExpOperand(type=Activation, shape=(24, 1, 1), dtype=float32)
GeluOperand(type=Activation, shape=(1, 4096, 384), dtype=float32)approximate : "none"
GeluOperand(type=Activation, shape=(1, 1024, 768), dtype=float32)approximate : "none"
GeluOperand(type=Activation, shape=(1, 256, 1536), dtype=float32)approximate : "none"
GeluOperand(type=Activation, shape=(1, 64, 3072), dtype=float32)approximate : "none"
IdentityOperand(type=Activation, shape=(1, 4096, 96), dtype=float32)
IdentityOperand(type=Activation, shape=(64, 3, 64, 64), dtype=float32)
IdentityOperand(type=Activation, shape=(64, 64, 96), dtype=float32)
IdentityOperand(type=Activation, shape=(16, 6, 64, 64), dtype=float32)
IdentityOperand(type=Activation, shape=(16, 64, 192), dtype=float32)
IdentityOperand(type=Activation, shape=(1, 1024, 192), dtype=float32)
IdentityOperand(type=Activation, shape=(4, 12, 64, 64), dtype=float32)
IdentityOperand(type=Activation, shape=(4, 64, 384), dtype=float32)
IdentityOperand(type=Activation, shape=(1, 256, 384), dtype=float32)
IdentityOperand(type=Activation, shape=(1, 24, 64, 64), dtype=float32)
IdentityOperand(type=Activation, shape=(1, 64, 768), dtype=float32)
IndexOperand(type=Activation, shape=(1, 64, 64, 96), dtype=float32)dim : -3
start : 4
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 64, 64, 96), dtype=float32)dim : -3
start : 0
stop : 4
stride : 1
IndexOperand(type=Activation, shape=(1, 64, 64, 96), dtype=float32)dim : -2
start : 4
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 64, 64, 96), dtype=float32)dim : -2
start : 0
stop : 4
stride : 1
IndexOperand(type=Activation, shape=(1, 64, 64, 96), dtype=float32)dim : -3
start : 60
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 64, 64, 96), dtype=float32)dim : -3
start : 0
stop : 60
stride : 1
IndexOperand(type=Activation, shape=(1, 64, 64, 96), dtype=float32)dim : -2
start : 60
stop : 64
stride : 1
IndexOperand(type=Activation, shape=(1, 64, 64, 96), dtype=float32)dim : -2
start : 0
stop : 60
stride : 1
IndexOperand(type=Activation, shape=(1, 64, 64, 96), dtype=float32)dim : -3
start : 0
stop : 64
stride : 2
IndexOperand(type=Activation, shape=(1, 64, 64, 96), dtype=float32)dim : -3
start : 1
stop : 64
stride : 2
IndexOperand(type=Activation, shape=(1, 32, 64, 96), dtype=float32)dim : -2
start : 0
stop : 64
stride : 2
IndexOperand(type=Activation, shape=(1, 32, 64, 96), dtype=float32)dim : -2
start : 1
stop : 64
stride : 2
IndexOperand(type=Activation, shape=(1, 32, 32, 192), dtype=float32)dim : -3
start : 4
stop : 32
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 32, 192), dtype=float32)dim : -3
start : 0
stop : 4
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 32, 192), dtype=float32)dim : -2
start : 4
stop : 32
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 32, 192), dtype=float32)dim : -2
start : 0
stop : 4
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 32, 192), dtype=float32)dim : -3
start : 28
stop : 32
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 32, 192), dtype=float32)dim : -3
start : 0
stop : 28
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 32, 192), dtype=float32)dim : -2
start : 28
stop : 32
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 32, 192), dtype=float32)dim : -2
start : 0
stop : 28
stride : 1
IndexOperand(type=Activation, shape=(1, 32, 32, 192), dtype=float32)dim : -3
start : 0
stop : 32
stride : 2
IndexOperand(type=Activation, shape=(1, 32, 32, 192), dtype=float32)dim : -3
start : 1
stop : 32
stride : 2
IndexOperand(type=Activation, shape=(1, 16, 32, 192), dtype=float32)dim : -2
start : 0
stop : 32
stride : 2
IndexOperand(type=Activation, shape=(1, 16, 32, 192), dtype=float32)dim : -2
start : 1
stop : 32
stride : 2
IndexOperand(type=Activation, shape=(1, 16, 16, 384), dtype=float32)dim : -3
start : 4
stop : 16
stride : 1
IndexOperand(type=Activation, shape=(1, 16, 16, 384), dtype=float32)dim : -3
start : 0
stop : 4
stride : 1
IndexOperand(type=Activation, shape=(1, 16, 16, 384), dtype=float32)dim : -2
start : 4
stop : 16
stride : 1
IndexOperand(type=Activation, shape=(1, 16, 16, 384), dtype=float32)dim : -2
start : 0
stop : 4
stride : 1
IndexOperand(type=Activation, shape=(1, 16, 16, 384), dtype=float32)dim : -3
start : 12
stop : 16
stride : 1
IndexOperand(type=Activation, shape=(1, 16, 16, 384), dtype=float32)dim : -3
start : 0
stop : 12
stride : 1
IndexOperand(type=Activation, shape=(1, 16, 16, 384), dtype=float32)dim : -2
start : 12
stop : 16
stride : 1
IndexOperand(type=Activation, shape=(1, 16, 16, 384), dtype=float32)dim : -2
start : 0
stop : 12
stride : 1
IndexOperand(type=Activation, shape=(1, 16, 16, 384), dtype=float32)dim : -3
start : 0
stop : 16
stride : 2
IndexOperand(type=Activation, shape=(1, 16, 16, 384), dtype=float32)dim : -3
start : 1
stop : 16
stride : 2
IndexOperand(type=Activation, shape=(1, 8, 16, 384), dtype=float32)dim : -2
start : 0
stop : 16
stride : 2
IndexOperand(type=Activation, shape=(1, 8, 16, 384), dtype=float32)dim : -2
start : 1
stop : 16
stride : 2
LayernormOperand(type=Activation, shape=(1, 4096, 96), dtype=float32)
X
Operand(type=Parameter, shape=(96,), dtype=float32)
X
Operand(type=Parameter, shape=(96,), dtype=float32)
dim : -1
epsilon : 1e-05
LayernormOperand(type=Activation, shape=(1, 1024, 192), dtype=float32)
X
Operand(type=Parameter, shape=(192,), dtype=float32)
X
Operand(type=Parameter, shape=(192,), dtype=float32)
dim : -1
epsilon : 1e-05
LayernormOperand(type=Activation, shape=(1, 256, 384), dtype=float32)
X
Operand(type=Parameter, shape=(384,), dtype=float32)
X
Operand(type=Parameter, shape=(384,), dtype=float32)
dim : -1
epsilon : 1e-05
LayernormOperand(type=Activation, shape=(1, 64, 768), dtype=float32)
X
Operand(type=Parameter, shape=(768,), dtype=float32)
X
Operand(type=Parameter, shape=(768,), dtype=float32)
dim : -1
epsilon : 1e-05
MatmulOperand(type=Activation, shape=(4096, 96), dtype=float32)
X
Operand(type=Activation, shape=(96, 96), dtype=float32)
MatmulOperand(type=Activation, shape=(192, 64, 32), dtype=float32)
X
Operand(type=Activation, shape=(192, 32, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(225, 2), dtype=float32)
X
Operand(type=Activation, shape=(2, 512), dtype=float32)
MatmulOperand(type=Activation, shape=(225, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 3), dtype=float32)
MatmulOperand(type=Activation, shape=(192, 64, 64), dtype=float32)
X
Operand(type=Activation, shape=(192, 64, 32), dtype=float32)
MatmulOperand(type=Activation, shape=(1, 4096, 96), dtype=float32)
X
Operand(type=Activation, shape=(96, 384), dtype=float32)
MatmulOperand(type=Activation, shape=(1, 4096, 384), dtype=float32)
X
Operand(type=Activation, shape=(384, 96), dtype=float32)
MatmulOperand(type=Activation, shape=(1024, 384), dtype=float32)
X
Operand(type=Activation, shape=(384, 192), dtype=float32)
MatmulOperand(type=Activation, shape=(1024, 192), dtype=float32)
X
Operand(type=Activation, shape=(192, 192), dtype=float32)
MatmulOperand(type=Activation, shape=(96, 64, 32), dtype=float32)
X
Operand(type=Activation, shape=(96, 32, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(225, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 6), dtype=float32)
MatmulOperand(type=Activation, shape=(96, 64, 64), dtype=float32)
X
Operand(type=Activation, shape=(96, 64, 32), dtype=float32)
MatmulOperand(type=Activation, shape=(1, 1024, 192), dtype=float32)
X
Operand(type=Activation, shape=(192, 768), dtype=float32)
MatmulOperand(type=Activation, shape=(1, 1024, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 192), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(256, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 384), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(256, 384), dtype=float32)
X
Operand(type=Activation, shape=(384, 384), dtype=float32)
MatmulOperand(type=Activation, shape=(48, 64, 32), dtype=float32)
X
Operand(type=Activation, shape=(48, 32, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(225, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 12), dtype=float32)
MatmulOperand(type=Activation, shape=(48, 64, 64), dtype=float32)
X
Operand(type=Activation, shape=(48, 64, 32), dtype=float32)
MatmulOperand(type=Activation, shape=(1, 256, 384), dtype=float32)
X
Operand(type=Activation, shape=(384, 1536), dtype=float32)
MatmulOperand(type=Activation, shape=(1, 256, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 384), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(64, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 768), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(64, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MatmulOperand(type=Activation, shape=(24, 64, 32), dtype=float32)
X
Operand(type=Activation, shape=(24, 32, 64), dtype=float32)
MatmulOperand(type=Activation, shape=(225, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 24), dtype=float32)
MatmulOperand(type=Activation, shape=(24, 64, 64), dtype=float32)
X
Operand(type=Activation, shape=(24, 64, 32), dtype=float32)
MatmulOperand(type=Activation, shape=(1, 64, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 3072), dtype=float32)
MatmulOperand(type=Activation, shape=(1, 64, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(64, 3, 64, 32), dtype=float32)
X
Operand(type=Activation, shape=(64, 3, 64, 32), dtype=float32)
MultiplyOperand(type=Activation, shape=(64, 3, 64, 64), dtype=float32)
X
Operand(type=Activation, shape=(3, 1, 1), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(3, 64, 64), dtype=float32)
X
Operand(type=Constant, name=const_00, dtype=float32)
MultiplyOperand(type=Activation, shape=(16, 6, 64, 32), dtype=float32)
X
Operand(type=Activation, shape=(16, 6, 64, 32), dtype=float32)
MultiplyOperand(type=Activation, shape=(16, 6, 64, 64), dtype=float32)
X
Operand(type=Activation, shape=(6, 1, 1), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(6, 64, 64), dtype=float32)
X
Operand(type=Constant, name=const_40, dtype=float32)
MultiplyOperand(type=Activation, shape=(4, 12, 64, 32), dtype=float32)
X
Operand(type=Activation, shape=(4, 12, 64, 32), dtype=float32)
MultiplyOperand(type=Activation, shape=(4, 12, 64, 64), dtype=float32)
X
Operand(type=Activation, shape=(12, 1, 1), dtype=float32)
[TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model
MultiplyOperand(type=Activation, shape=(12, 64, 64), dtype=float32)
X
Operand(type=Constant, name=const_80, dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 24, 64, 32), dtype=float32)
X
Operand(type=Activation, shape=(1, 24, 64, 32), dtype=float32)
MultiplyOperand(type=Activation, shape=(1, 24, 64, 64), dtype=float32)
X
Operand(type=Activation, shape=(24, 1, 1), dtype=float32)
MultiplyOperand(type=Activation, shape=(24, 64, 64), dtype=float32)
X
Operand(type=Constant, name=const_200, dtype=float32)
PixelShuffleOperand(type=Activation, shape=(1, 3072, 8, 8), dtype=float32)upscale_factor : 32
ReciprocalOperand(type=Activation, shape=(64, 3, 64, 32), dtype=float32)
ReciprocalOperand(type=Activation, shape=(16, 6, 64, 32), dtype=float32)
ReciprocalOperand(type=Activation, shape=(4, 12, 64, 32), dtype=float32)
ReciprocalOperand(type=Activation, shape=(1, 24, 64, 32), dtype=float32)
ReduceSumOperand(type=Activation, shape=(64, 3, 64, 32), dtype=float32)dim : -1
keep_dim : True
ReduceSumOperand(type=Activation, shape=(16, 6, 64, 32), dtype=float32)dim : -1
keep_dim : True
ReduceSumOperand(type=Activation, shape=(4, 12, 64, 32), dtype=float32)dim : -1
keep_dim : True
ReduceSumOperand(type=Activation, shape=(1, 24, 64, 32), dtype=float32)dim : -1
keep_dim : True
ReluOperand(type=Activation, shape=(1, 15, 15, 512), dtype=float32)
ReshapeOperand(type=Activation, shape=(1, 96, 64, 64), dtype=float32)shape : (1, 96, 4096, 1)
ReshapeOperand(type=Activation, shape=(1, 4096, 96), dtype=float32)shape : (1, 8, 8, 8, 8, 96)
ReshapeOperand(type=Activation, shape=(1, 4096, 96), dtype=float32)shape : (1, 64, 64, 96)
ReshapeOperand(type=Activation, shape=(1, 8, 8, 8, 8, 96), dtype=float32)shape : (4096, 96)
ReshapeOperand(type=Activation, shape=(1, 8, 8, 8, 8, 96), dtype=float32)shape : (1, 4096, 96)
ReshapeOperand(type=Activation, shape=(1, 8, 8, 8, 8, 96), dtype=float32)shape : (1, 64, 64, 96)
ReshapeOperand(type=Activation, shape=(4096, 96), dtype=float32)shape : (64, 64, 96)
ReshapeOperand(type=Activation, shape=(4096, 96), dtype=float32)shape : (64, 64, 3, 32)
ReshapeOperand(type=Activation, shape=(64, 64, 96), dtype=float32)shape : (64, 64, 3, 32)
ReshapeOperand(type=Activation, shape=(64, 64, 96), dtype=float32)shape : (1, 8, 8, 8, 8, 96)
ReshapeOperand(type=Activation, shape=(64, 3, 64, 32), dtype=float32)shape : (192, 64, 32)
ReshapeOperand(type=Activation, shape=(192, 64, 64), dtype=float32)shape : (64, 3, 64, 64)
ReshapeOperand(type=Constant, name=swinv2.encoder.layers.0.blocks.0.attention.self.relative_coords_table, dtype=float32)shape : (225, 2)
ReshapeOperand(type=Activation, shape=(225, 512), dtype=float32)shape : (1, 15, 15, 512)
ReshapeOperand(type=Activation, shape=(1, 15, 15, 512), dtype=float32)shape : (225, 512)
ReshapeOperand(type=Activation, shape=(225, 3), dtype=float32)shape : (225, 3)
ReshapeOperand(type=Constant, name=swinv2.encoder.layers.0.blocks.0.attention.self.relative_position_index, dtype=int64)shape : (4096,)
ReshapeOperand(type=Activation, shape=(4096, 3), dtype=float32)shape : (64, 64, 3)
ReshapeOperand(type=Activation, shape=(64, 3, 64, 64), dtype=float32)shape : (192, 64, 64)
ReshapeOperand(type=Activation, shape=(64, 3, 64, 64), dtype=float32)shape : (1, 64, 3, 64, 64)
ReshapeOperand(type=Activation, shape=(64, 3, 32, 64), dtype=float32)shape : (192, 32, 64)
ReshapeOperand(type=Activation, shape=(192, 64, 32), dtype=float32)shape : (64, 3, 64, 32)
ReshapeOperand(type=Activation, shape=(64, 64, 3, 32), dtype=float32)shape : (4096, 96)
ReshapeOperand(type=Activation, shape=(1, 64, 64, 96), dtype=float32)shape : (1, 8, 8, 8, 8, 96)
ReshapeOperand(type=Activation, shape=(1, 64, 64, 96), dtype=float32)shape : (1, 4096, 96)
ReshapeOperand(type=Activation, shape=(1, 64, 3, 64, 64), dtype=float32)shape : (64, 3, 64, 64)
ReshapeOperand(type=Activation, shape=(1, 32, 32, 384), dtype=float32)shape : (1024, 384)
ReshapeOperand(type=Activation, shape=(1024, 192), dtype=float32)shape : (1, 1024, 192)
ReshapeOperand(type=Activation, shape=(1024, 192), dtype=float32)shape : (16, 64, 192)
ReshapeOperand(type=Activation, shape=(1024, 192), dtype=float32)shape : (16, 64, 6, 32)
ReshapeOperand(type=Activation, shape=(1, 1024, 192), dtype=float32)shape : (1, 4, 8, 4, 8, 192)
ReshapeOperand(type=Activation, shape=(1, 1024, 192), dtype=float32)shape : (1, 32, 32, 192)
ReshapeOperand(type=Activation, shape=(1, 4, 4, 8, 8, 192), dtype=float32)shape : (1024, 192)
ReshapeOperand(type=Activation, shape=(16, 64, 192), dtype=float32)shape : (16, 64, 6, 32)
ReshapeOperand(type=Activation, shape=(16, 64, 192), dtype=float32)shape : (1, 4, 4, 8, 8, 192)
ReshapeOperand(type=Activation, shape=(16, 6, 64, 32), dtype=float32)shape : (96, 64, 32)
ReshapeOperand(type=Activation, shape=(96, 64, 64), dtype=float32)shape : (16, 6, 64, 64)
ReshapeOperand(type=Activation, shape=(225, 6), dtype=float32)shape : (225, 6)
ReshapeOperand(type=Activation, shape=(4096, 6), dtype=float32)shape : (64, 64, 6)
ReshapeOperand(type=Activation, shape=(16, 6, 64, 64), dtype=float32)shape : (96, 64, 64)
ReshapeOperand(type=Activation, shape=(16, 6, 64, 64), dtype=float32)shape : (1, 16, 6, 64, 64)
ReshapeOperand(type=Activation, shape=(16, 6, 32, 64), dtype=float32)shape : (96, 32, 64)
ReshapeOperand(type=Activation, shape=(96, 64, 32), dtype=float32)shape : (16, 6, 64, 32)
ReshapeOperand(type=Activation, shape=(16, 64, 6, 32), dtype=float32)shape : (1024, 192)
ReshapeOperand(type=Activation, shape=(1, 4, 8, 4, 8, 192), dtype=float32)shape : (1, 1024, 192)
ReshapeOperand(type=Activation, shape=(1, 4, 8, 4, 8, 192), dtype=float32)shape : (1, 32, 32, 192)
ReshapeOperand(type=Activation, shape=(1, 32, 32, 192), dtype=float32)shape : (1, 4, 8, 4, 8, 192)
ReshapeOperand(type=Activation, shape=(1, 32, 32, 192), dtype=float32)shape : (1, 1024, 192)
ReshapeOperand(type=Activation, shape=(1, 16, 6, 64, 64), dtype=float32)shape : (16, 6, 64, 64)
ReshapeOperand(type=Activation, shape=(1, 16, 16, 768), dtype=float32)shape : (256, 768)
ReshapeOperand(type=Activation, shape=(256, 384), dtype=float32)shape : (1, 256, 384)
ReshapeOperand(type=Activation, shape=(256, 384), dtype=float32)shape : (4, 64, 384)
ReshapeOperand(type=Activation, shape=(256, 384), dtype=float32)shape : (4, 64, 12, 32)
ReshapeOperand(type=Activation, shape=(1, 256, 384), dtype=float32)shape : (1, 2, 8, 2, 8, 384)
ReshapeOperand(type=Activation, shape=(1, 256, 384), dtype=float32)shape : (1, 16, 16, 384)
ReshapeOperand(type=Activation, shape=(1, 2, 2, 8, 8, 384), dtype=float32)shape : (256, 384)
ReshapeOperand(type=Activation, shape=(4, 64, 384), dtype=float32)shape : (4, 64, 12, 32)
ReshapeOperand(type=Activation, shape=(4, 64, 384), dtype=float32)shape : (1, 2, 2, 8, 8, 384)
ReshapeOperand(type=Activation, shape=(4, 12, 64, 32), dtype=float32)shape : (48, 64, 32)
ReshapeOperand(type=Activation, shape=(48, 64, 64), dtype=float32)shape : (4, 12, 64, 64)
ReshapeOperand(type=Activation, shape=(225, 12), dtype=float32)shape : (225, 12)
ReshapeOperand(type=Activation, shape=(4096, 12), dtype=float32)shape : (64, 64, 12)
ReshapeOperand(type=Activation, shape=(4, 12, 64, 64), dtype=float32)shape : (48, 64, 64)
ReshapeOperand(type=Activation, shape=(4, 12, 64, 64), dtype=float32)shape : (1, 4, 12, 64, 64)
ReshapeOperand(type=Activation, shape=(4, 12, 32, 64), dtype=float32)shape : (48, 32, 64)
ReshapeOperand(type=Activation, shape=(48, 64, 32), dtype=float32)shape : (4, 12, 64, 32)
ReshapeOperand(type=Activation, shape=(4, 64, 12, 32), dtype=float32)shape : (256, 384)
ReshapeOperand(type=Activation, shape=(1, 2, 8, 2, 8, 384), dtype=float32)shape : (1, 256, 384)
ReshapeOperand(type=Activation, shape=(1, 2, 8, 2, 8, 384), dtype=float32)shape : (1, 16, 16, 384)
ReshapeOperand(type=Activation, shape=(1, 16, 16, 384), dtype=float32)shape : (1, 2, 8, 2, 8, 384)
ReshapeOperand(type=Activation, shape=(1, 16, 16, 384), dtype=float32)shape : (1, 256, 384)
ReshapeOperand(type=Activation, shape=(1, 4, 12, 64, 64), dtype=float32)shape : (4, 12, 64, 64)
ReshapeOperand(type=Activation, shape=(1, 8, 8, 1536), dtype=float32)shape : (64, 1536)
ReshapeOperand(type=Activation, shape=(64, 768), dtype=float32)shape : (1, 64, 768)
ReshapeOperand(type=Activation, shape=(64, 768), dtype=float32)shape : (1, 64, 24, 32)
ReshapeOperand(type=Activation, shape=(1, 64, 768), dtype=float32)shape : (64, 768)
ReshapeOperand(type=Activation, shape=(1, 64, 768), dtype=float32)shape : (1, 64, 24, 32)
ReshapeOperand(type=Activation, shape=(1, 64, 768), dtype=float32)shape : (1, 64, 768)
ReshapeOperand(type=Activation, shape=(1, 24, 64, 32), dtype=float32)shape : (24, 64, 32)
ReshapeOperand(type=Activation, shape=(24, 64, 64), dtype=float32)shape : (1, 24, 64, 64)
ReshapeOperand(type=Activation, shape=(225, 24), dtype=float32)shape : (225, 24)
ReshapeOperand(type=Activation, shape=(4096, 24), dtype=float32)shape : (64, 64, 24)
ReshapeOperand(type=Activation, shape=(1, 24, 64, 64), dtype=float32)shape : (24, 64, 64)
ReshapeOperand(type=Activation, shape=(1, 24, 32, 64), dtype=float32)shape : (24, 32, 64)
ReshapeOperand(type=Activation, shape=(24, 64, 32), dtype=float32)shape : (1, 24, 64, 32)
ReshapeOperand(type=Activation, shape=(1, 64, 24, 32), dtype=float32)shape : (64, 768)
ReshapeOperand(type=Activation, shape=(1, 768, 64), dtype=float32)shape : (1, 768, 8, 8)
SigmoidOperand(type=Activation, shape=(3, 64, 64), dtype=float32)
SigmoidOperand(type=Activation, shape=(6, 64, 64), dtype=float32)
SigmoidOperand(type=Activation, shape=(12, 64, 64), dtype=float32)
SigmoidOperand(type=Activation, shape=(24, 64, 64), dtype=float32)
SoftmaxOperand(type=Activation, shape=(64, 3, 64, 64), dtype=float32)dim : -1
SoftmaxOperand(type=Activation, shape=(16, 6, 64, 64), dtype=float32)dim : -1
SoftmaxOperand(type=Activation, shape=(4, 12, 64, 64), dtype=float32)dim : -1
SoftmaxOperand(type=Activation, shape=(1, 24, 64, 64), dtype=float32)dim : -1
SqrtOperand(type=Activation, shape=(64, 3, 64, 1), dtype=float32)
SqrtOperand(type=Activation, shape=(16, 6, 64, 1), dtype=float32)
SqrtOperand(type=Activation, shape=(4, 12, 64, 1), dtype=float32)
SqrtOperand(type=Activation, shape=(1, 24, 64, 1), dtype=float32)
SqueezeOperand(type=Activation, shape=(1, 96, 4096, 1), dtype=float32)dim : -1
TransposeOperand(type=Parameter, shape=(768, 768), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(3072, 768), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(768, 3072), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(384, 384), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(1536, 384), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(384, 1536), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(192, 192), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(768, 192), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(192, 768), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 96, 4096), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 8, 8, 8, 8, 96), dtype=float32)dim0 : -4
dim1 : -3
TransposeOperand(type=Parameter, shape=(96, 96), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(64, 64, 3, 32), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(192, 64, 32), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(512, 2), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(3, 512), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(64, 64, 3), dtype=float32)dim0 : -3
dim1 : -1
TransposeOperand(type=Activation, shape=(3, 64, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(64, 3, 64, 32), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(64, 3, 64, 32), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(192, 32, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(384, 96), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(96, 384), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(192, 384), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 4, 8, 4, 8, 192), dtype=float32)dim0 : -4
dim1 : -3
TransposeOperand(type=Activation, shape=(16, 64, 6, 32), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(96, 64, 32), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(6, 512), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(64, 64, 6), dtype=float32)dim0 : -3
dim1 : -1
TransposeOperand(type=Activation, shape=(6, 64, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(16, 6, 64, 32), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(16, 6, 64, 32), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(96, 32, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 4, 4, 8, 8, 192), dtype=float32)dim0 : -4
dim1 : -3
TransposeOperand(type=Parameter, shape=(384, 768), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 2, 8, 2, 8, 384), dtype=float32)dim0 : -4
dim1 : -3
TransposeOperand(type=Activation, shape=(4, 64, 12, 32), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(48, 64, 32), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(12, 512), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(64, 64, 12), dtype=float32)dim0 : -3
dim1 : -1
TransposeOperand(type=Activation, shape=(12, 64, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(4, 12, 64, 32), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(4, 12, 64, 32), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(48, 32, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 2, 2, 8, 8, 384), dtype=float32)dim0 : -4
dim1 : -3
TransposeOperand(type=Parameter, shape=(768, 1536), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 64, 24, 32), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(24, 64, 32), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Parameter, shape=(24, 512), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(64, 64, 24), dtype=float32)dim0 : -3
dim1 : -1
TransposeOperand(type=Activation, shape=(24, 64, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 24, 64, 32), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 24, 64, 32), dtype=float32)dim0 : -3
dim1 : -2
TransposeOperand(type=Activation, shape=(24, 32, 64), dtype=float32)dim0 : -2
dim1 : -1
TransposeOperand(type=Activation, shape=(1, 64, 768), dtype=float32)dim0 : -2
dim1 : -1
UnsqueezeOperand(type=Parameter, shape=(3072,), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(3072, 1), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(96, 1), dtype=float32)dim : 1
UnsqueezeOperand(type=Parameter, shape=(96,), dtype=float32)dim : 1
UnsqueezeOperand(type=Activation, shape=(3, 64, 64), dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(6, 64, 64), dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(12, 64, 64), dtype=float32)dim : 0
UnsqueezeOperand(type=Activation, shape=(24, 64, 64), dtype=float32)dim : 0
diff --git a/model_analysis_docs/Models/t5/pt_google_flan_t5_base.md b/model_analysis_docs/Models/t5/pt_google_flan_t5_base.md index 0a97a2f0b..10f9e5e39 100644 --- a/model_analysis_docs/Models/t5/pt_google_flan_t5_base.md +++ b/model_analysis_docs/Models/t5/pt_google_flan_t5_base.md @@ -59,24 +59,64 @@ - Embedding - Operand(type=Activation, shape=(1, 1), dtype=int32)
X
Operand(type=Parameter, shape=(32128, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(32128, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(32, 12), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 1, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 1, 12), dtype=bfloat16) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 + Embedding - Operand(type=Constant, name=const_10, dtype=int32)
X
Operand(type=Parameter, shape=(32, 12), dtype=float32) + Operand(type=Activation, shape=(1, 1), dtype=int32)
X
Operand(type=Activation, shape=(32128, 768), dtype=bfloat16) ✅ ✅ - ❌ + ✅ + + + + + Embedding + Operand(type=Constant, name=const_10, dtype=int32)
X
Operand(type=Activation, shape=(32, 12), dtype=bfloat16) + + + + + � - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Gelu @@ -142,21 +182,21 @@ Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(256, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -212,21 +252,21 @@ Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -274,19 +314,19 @@ ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg Operand(type=Activation, shape=(1, 1, 768), dtype=float32) dim : -1
keep_dim : True + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Reshape diff --git a/model_analysis_docs/Models/t5/pt_google_flan_t5_small.md b/model_analysis_docs/Models/t5/pt_google_flan_t5_small.md index baa6197cc..e52c88771 100644 --- a/model_analysis_docs/Models/t5/pt_google_flan_t5_small.md +++ b/model_analysis_docs/Models/t5/pt_google_flan_t5_small.md @@ -59,24 +59,64 @@ - Embedding - Operand(type=Activation, shape=(1, 1), dtype=int32)
X
Operand(type=Parameter, shape=(32128, 512), dtype=float32) + Cast + Operand(type=Parameter, shape=(32128, 512), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 512), dtype=bfloat16) + dtype : torch.float32 ✅ ✅ - ❌ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(32, 6), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 1, 6), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Embedding - Operand(type=Constant, name=const_10, dtype=int32)
X
Operand(type=Parameter, shape=(32, 6), dtype=float32) + Operand(type=Activation, shape=(1, 1), dtype=int32)
X
Operand(type=Activation, shape=(32128, 512), dtype=bfloat16) ✅ ✅ - ❌ + ✅ + + + + + Embedding + Operand(type=Constant, name=const_10, dtype=int32)
X
Operand(type=Activation, shape=(32, 6), dtype=bfloat16) + + + + + � - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Gelu @@ -172,11 +212,11 @@ Matmul Operand(type=Activation, shape=(1, 1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -234,19 +274,29 @@ ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg Operand(type=Activation, shape=(1, 1, 512), dtype=float32) dim : -1
keep_dim : True + ✅ + ✅ + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model + + + Reshape + Operand(type=Activation, shape=(1, 1024), dtype=float32) + shape : (1, 1, 1024) + ✅ + ✅ + ✅ - � - Reshape @@ -348,16 +398,6 @@ - - Reshape - Operand(type=Activation, shape=(1, 1024), dtype=float32) - shape : (1, 1, 1024) - ✅ - ✅ - ✅ - - - Softmax Operand(type=Activation, shape=(1, 6, 1, 1), dtype=float32) diff --git a/model_analysis_docs/Models/t5/pt_t5_base.md b/model_analysis_docs/Models/t5/pt_t5_base.md index efe465af0..8b03b3e63 100644 --- a/model_analysis_docs/Models/t5/pt_t5_base.md +++ b/model_analysis_docs/Models/t5/pt_t5_base.md @@ -59,24 +59,64 @@ - Embedding - Operand(type=Activation, shape=(1, 1), dtype=int32)
X
Operand(type=Parameter, shape=(32128, 768), dtype=float32) + Cast + Operand(type=Parameter, shape=(32128, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Parameter, shape=(32, 12), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 1, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 + + + + Cast + Operand(type=Activation, shape=(1, 1, 12), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + Embedding - Operand(type=Constant, name=const_10, dtype=int32)
X
Operand(type=Parameter, shape=(32, 12), dtype=float32) + Operand(type=Activation, shape=(1, 1), dtype=int32)
X
Operand(type=Activation, shape=(32128, 768), dtype=bfloat16) ✅ ✅ - ❌ + ✅ + + + + + Embedding + Operand(type=Constant, name=const_10, dtype=int32)
X
Operand(type=Activation, shape=(32, 12), dtype=bfloat16) + + + + + � - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Identity @@ -132,21 +172,21 @@ Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(256, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -202,11 +242,11 @@ Matmul Operand(type=Activation, shape=(1, 1, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -264,19 +304,19 @@ ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg Operand(type=Activation, shape=(1, 1, 768), dtype=float32) dim : -1
keep_dim : True + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Relu diff --git a/model_analysis_docs/Models/t5/pt_t5_large.md b/model_analysis_docs/Models/t5/pt_t5_large.md index eac1993b4..7757274ef 100644 --- a/model_analysis_docs/Models/t5/pt_t5_large.md +++ b/model_analysis_docs/Models/t5/pt_t5_large.md @@ -59,24 +59,64 @@ - Embedding - Operand(type=Activation, shape=(1, 1), dtype=int32)
X
Operand(type=Parameter, shape=(32128, 1024), dtype=float32) + Cast + Operand(type=Parameter, shape=(32128, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 1024), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(32, 16), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 1, 16), dtype=bfloat16) + dtype : torch.float32 + ✅ ✅ ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 + Embedding - Operand(type=Constant, name=const_10, dtype=int32)
X
Operand(type=Parameter, shape=(32, 16), dtype=float32) + Operand(type=Activation, shape=(1, 1), dtype=int32)
X
Operand(type=Activation, shape=(32128, 1024), dtype=bfloat16) ✅ ✅ - ❌ + ✅ + + + + + Embedding + Operand(type=Constant, name=const_10, dtype=int32)
X
Operand(type=Activation, shape=(32, 16), dtype=bfloat16) + + + + + � - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Identity @@ -132,21 +172,21 @@ Matmul Operand(type=Activation, shape=(256, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -202,11 +242,11 @@ Matmul Operand(type=Activation, shape=(1, 1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -264,19 +304,19 @@ ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg Operand(type=Activation, shape=(1, 1, 1024), dtype=float32) dim : -1
keep_dim : True + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Relu @@ -290,8 +330,8 @@ Reshape - Operand(type=Activation, shape=(1, 256, 1024), dtype=float32) - shape : (256, 1024) + Operand(type=Activation, shape=(1, 1024), dtype=float32) + shape : (1, 1, 1024) ✅ ✅ ✅ @@ -300,8 +340,8 @@ Reshape - Operand(type=Activation, shape=(256, 1024), dtype=float32) - shape : (1, 256, 16, 64) + Operand(type=Activation, shape=(1, 1024), dtype=float32) + shape : (1, 1, 16, 64) ✅ ✅ ✅ @@ -310,8 +350,8 @@ Reshape - Operand(type=Activation, shape=(1, 16, 256, 64), dtype=float32) - shape : (16, 256, 64) + Operand(type=Activation, shape=(1, 256, 1024), dtype=float32) + shape : (256, 1024) ✅ ✅ ✅ @@ -320,8 +360,8 @@ Reshape - Operand(type=Activation, shape=(1, 16, 64, 256), dtype=float32) - shape : (16, 64, 256) + Operand(type=Activation, shape=(256, 1024), dtype=float32) + shape : (1, 256, 16, 64) ✅ ✅ ✅ @@ -330,8 +370,8 @@ Reshape - Operand(type=Activation, shape=(1, 1), dtype=int32) - shape : (1, 1) + Operand(type=Activation, shape=(1, 16, 256, 64), dtype=float32) + shape : (16, 256, 64) ✅ ✅ ✅ @@ -340,8 +380,8 @@ Reshape - Operand(type=Activation, shape=(1, 1024), dtype=float32) - shape : (1, 1, 1024) + Operand(type=Activation, shape=(1, 16, 64, 256), dtype=float32) + shape : (16, 64, 256) ✅ ✅ ✅ @@ -350,8 +390,8 @@ Reshape - Operand(type=Activation, shape=(1, 1024), dtype=float32) - shape : (1, 1, 16, 64) + Operand(type=Activation, shape=(1, 1), dtype=int32) + shape : (1, 1) ✅ ✅ ✅ diff --git a/model_analysis_docs/Models/t5/pt_t5_small.md b/model_analysis_docs/Models/t5/pt_t5_small.md index 673f31e67..c92ff240c 100644 --- a/model_analysis_docs/Models/t5/pt_t5_small.md +++ b/model_analysis_docs/Models/t5/pt_t5_small.md @@ -59,24 +59,64 @@ - Embedding - Operand(type=Activation, shape=(1, 1), dtype=int32)
X
Operand(type=Parameter, shape=(32128, 512), dtype=float32) + Cast + Operand(type=Parameter, shape=(32128, 512), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + Cast + Operand(type=Activation, shape=(1, 1, 512), dtype=bfloat16) + dtype : torch.float32 ✅ ✅ - ❌ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(32, 8), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 1, 8), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Embedding - Operand(type=Constant, name=const_10, dtype=int32)
X
Operand(type=Parameter, shape=(32, 8), dtype=float32) + Operand(type=Activation, shape=(1, 1), dtype=int32)
X
Operand(type=Activation, shape=(32128, 512), dtype=bfloat16) ✅ ✅ - ❌ + ✅ + + + + + Embedding + Operand(type=Constant, name=const_10, dtype=int32)
X
Operand(type=Activation, shape=(32, 8), dtype=bfloat16) + + + + + � - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Identity @@ -162,11 +202,11 @@ Matmul Operand(type=Activation, shape=(1, 1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -214,19 +254,19 @@ ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg Operand(type=Activation, shape=(1, 1, 512), dtype=float32) dim : -1
keep_dim : True + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Relu diff --git a/model_analysis_docs/Models/unet/pt_unet_cityscapes_osmr.md b/model_analysis_docs/Models/unet/pt_unet_cityscapes_osmr.md index bb5199952..81fec71c4 100644 --- a/model_analysis_docs/Models/unet/pt_unet_cityscapes_osmr.md +++ b/model_analysis_docs/Models/unet/pt_unet_cityscapes_osmr.md @@ -403,40 +403,40 @@ Operand(type=Activation, shape=(1, 64, 224, 224), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply @@ -982,11 +982,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/unet/pt_unet_qubvel_pt.md b/model_analysis_docs/Models/unet/pt_unet_qubvel_pt.md index 99cc2af57..a7bfb372f 100644 --- a/model_analysis_docs/Models/unet/pt_unet_qubvel_pt.md +++ b/model_analysis_docs/Models/unet/pt_unet_qubvel_pt.md @@ -1672,11 +1672,11 @@ Conv2d Operand(type=Activation, shape=(1, 3072, 14, 14), dtype=float32)
X
Operand(type=Parameter, shape=(256, 3072, 3, 3), dtype=float32) stride : [1, 1]
padding : [1, 1, 1, 1]
dilation : 1
groups : 1
channel_last : 0 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Conv2d @@ -1733,10 +1733,10 @@ Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/unet/pt_unet_torchhub.md b/model_analysis_docs/Models/unet/pt_unet_torchhub.md index 720b1305e..7face5a7f 100644 --- a/model_analysis_docs/Models/unet/pt_unet_torchhub.md +++ b/model_analysis_docs/Models/unet/pt_unet_torchhub.md @@ -543,40 +543,40 @@ Operand(type=Activation, shape=(1, 32, 256, 256), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 128, 128), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 64, 64), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 32, 32), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/vgg/pt_bn_vgg19_osmr.md b/model_analysis_docs/Models/vgg/pt_bn_vgg19_osmr.md index 16e7376d3..4fb566f72 100644 --- a/model_analysis_docs/Models/vgg/pt_bn_vgg19_osmr.md +++ b/model_analysis_docs/Models/vgg/pt_bn_vgg19_osmr.md @@ -392,81 +392,81 @@ Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 25088), dtype=float32)
X
Operand(type=Activation, shape=(25088, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 64, 224, 224), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/vgg/pt_bn_vgg19b_osmr.md b/model_analysis_docs/Models/vgg/pt_bn_vgg19b_osmr.md index 9aee1b088..88a767ed6 100644 --- a/model_analysis_docs/Models/vgg/pt_bn_vgg19b_osmr.md +++ b/model_analysis_docs/Models/vgg/pt_bn_vgg19b_osmr.md @@ -392,81 +392,81 @@ Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 25088), dtype=float32)
X
Operand(type=Activation, shape=(25088, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 64, 224, 224), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply @@ -1082,11 +1082,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/vgg/pt_vgg11_osmr.md b/model_analysis_docs/Models/vgg/pt_vgg11_osmr.md index 2a1c3359a..f672b5e61 100644 --- a/model_analysis_docs/Models/vgg/pt_vgg11_osmr.md +++ b/model_analysis_docs/Models/vgg/pt_vgg11_osmr.md @@ -172,81 +172,81 @@ Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 25088), dtype=float32)
X
Operand(type=Activation, shape=(25088, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 64, 224, 224), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Relu @@ -412,11 +412,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/vgg/pt_vgg13_osmr.md b/model_analysis_docs/Models/vgg/pt_vgg13_osmr.md index 7e9ab4628..4ee51a4a3 100644 --- a/model_analysis_docs/Models/vgg/pt_vgg13_osmr.md +++ b/model_analysis_docs/Models/vgg/pt_vgg13_osmr.md @@ -192,81 +192,81 @@ Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 25088), dtype=float32)
X
Operand(type=Activation, shape=(25088, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 64, 224, 224), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Relu @@ -432,11 +432,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/vgg/pt_vgg16_osmr.md b/model_analysis_docs/Models/vgg/pt_vgg16_osmr.md index 7e9ab4628..4ee51a4a3 100644 --- a/model_analysis_docs/Models/vgg/pt_vgg16_osmr.md +++ b/model_analysis_docs/Models/vgg/pt_vgg16_osmr.md @@ -192,81 +192,81 @@ Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 25088), dtype=float32)
X
Operand(type=Activation, shape=(25088, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 64, 224, 224), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Relu @@ -432,11 +432,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/vgg/pt_vgg19_bn_timm.md b/model_analysis_docs/Models/vgg/pt_vgg19_bn_timm.md index 8ae5d1c94..03fa0b6c3 100644 --- a/model_analysis_docs/Models/vgg/pt_vgg19_bn_timm.md +++ b/model_analysis_docs/Models/vgg/pt_vgg19_bn_timm.md @@ -392,11 +392,11 @@ Conv2d Operand(type=Activation, shape=(1, 512, 7, 7), dtype=float32)
X
Operand(type=Parameter, shape=(4096, 512, 7, 7), dtype=float32) stride : [1, 1]
padding : [0, 0, 0, 0]
dilation : 1
groups : 1
channel_last : 0 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Conv2d @@ -422,61 +422,61 @@ Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 64, 224, 224), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply @@ -1092,11 +1092,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/vgg/pt_vgg19_osmr.md b/model_analysis_docs/Models/vgg/pt_vgg19_osmr.md index 7e9ab4628..4ee51a4a3 100644 --- a/model_analysis_docs/Models/vgg/pt_vgg19_osmr.md +++ b/model_analysis_docs/Models/vgg/pt_vgg19_osmr.md @@ -192,81 +192,81 @@ Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 25088), dtype=float32)
X
Operand(type=Activation, shape=(25088, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 64, 224, 224), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Relu @@ -432,11 +432,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/vgg/pt_vgg_19_hf.md b/model_analysis_docs/Models/vgg/pt_vgg_19_hf.md index 102fdc689..090c72186 100644 --- a/model_analysis_docs/Models/vgg/pt_vgg_19_hf.md +++ b/model_analysis_docs/Models/vgg/pt_vgg_19_hf.md @@ -202,81 +202,81 @@ Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 25088), dtype=float32)
X
Operand(type=Activation, shape=(25088, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 64, 224, 224), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Relu @@ -462,11 +462,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/vgg/pt_vgg_bn19_torchhub.md b/model_analysis_docs/Models/vgg/pt_vgg_bn19_torchhub.md index fabb53e3e..bad3c4855 100644 --- a/model_analysis_docs/Models/vgg/pt_vgg_bn19_torchhub.md +++ b/model_analysis_docs/Models/vgg/pt_vgg_bn19_torchhub.md @@ -402,81 +402,81 @@ Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 25088), dtype=float32)
X
Operand(type=Activation, shape=(25088, 4096), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 14), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 64, 224, 224), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 112, 112), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 2
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply @@ -1112,11 +1112,11 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze diff --git a/model_analysis_docs/Models/vilt/pt_ViLt_maskedlm.md b/model_analysis_docs/Models/vilt/pt_ViLt_maskedlm.md index 6674df94b..8d65a5cdd 100644 --- a/model_analysis_docs/Models/vilt/pt_ViLt_maskedlm.md +++ b/model_analysis_docs/Models/vilt/pt_ViLt_maskedlm.md @@ -154,9 +154,9 @@ ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -192,21 +192,21 @@ Matmul Operand(type=Activation, shape=(1, 204, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 11, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/vilt/pt_ViLt_question_answering.md b/model_analysis_docs/Models/vilt/pt_ViLt_question_answering.md index ba75ede60..f7fb504f9 100644 --- a/model_analysis_docs/Models/vilt/pt_ViLt_question_answering.md +++ b/model_analysis_docs/Models/vilt/pt_ViLt_question_answering.md @@ -162,11 +162,11 @@ Matmul Operand(type=Activation, shape=(201, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -202,31 +202,31 @@ Matmul Operand(type=Activation, shape=(1, 201, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 1536), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -420,8 +420,8 @@ Transpose - Operand(type=Activation, shape=(1, 201, 12, 64), dtype=float32) - dim0 : -3
dim1 : -2 + Operand(type=Parameter, shape=(1536, 768), dtype=float32) + dim0 : -2
dim1 : -1 ✅ ✅ ✅ @@ -430,8 +430,8 @@ Transpose - Operand(type=Activation, shape=(12, 201, 64), dtype=float32) - dim0 : -2
dim1 : -1 + Operand(type=Activation, shape=(1, 201, 12, 64), dtype=float32) + dim0 : -3
dim1 : -2 ✅ ✅ ✅ @@ -440,7 +440,7 @@ Transpose - Operand(type=Activation, shape=(1, 12, 201, 64), dtype=float32) + Operand(type=Activation, shape=(12, 201, 64), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -451,7 +451,7 @@ Transpose Operand(type=Activation, shape=(1, 12, 201, 64), dtype=float32) - dim0 : -3
dim1 : -2 + dim0 : -2
dim1 : -1 ✅ ✅ ✅ @@ -460,8 +460,8 @@ Transpose - Operand(type=Activation, shape=(12, 64, 201), dtype=float32) - dim0 : -2
dim1 : -1 + Operand(type=Activation, shape=(1, 12, 201, 64), dtype=float32) + dim0 : -3
dim1 : -2 ✅ ✅ ✅ @@ -470,7 +470,7 @@ Transpose - Operand(type=Parameter, shape=(1536, 768), dtype=float32) + Operand(type=Activation, shape=(12, 64, 201), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ diff --git a/model_analysis_docs/Models/vit/pt_vit_base_patch16_224.md b/model_analysis_docs/Models/vit/pt_vit_base_patch16_224.md index 089ef4c12..08253e497 100644 --- a/model_analysis_docs/Models/vit/pt_vit_base_patch16_224.md +++ b/model_analysis_docs/Models/vit/pt_vit_base_patch16_224.md @@ -152,11 +152,11 @@ Matmul Operand(type=Activation, shape=(197, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul @@ -192,21 +192,21 @@ Matmul Operand(type=Activation, shape=(1, 197, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/vit/pt_vit_large_patch16_224.md b/model_analysis_docs/Models/vit/pt_vit_large_patch16_224.md index b9385669a..bbfc12a74 100644 --- a/model_analysis_docs/Models/vit/pt_vit_large_patch16_224.md +++ b/model_analysis_docs/Models/vit/pt_vit_large_patch16_224.md @@ -152,21 +152,21 @@ Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(197, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -202,11 +202,11 @@ Matmul Operand(type=Activation, shape=(1, 197, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -472,11 +472,11 @@ Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model diff --git a/model_analysis_docs/Models/vovnet/pt_ese_vovnet19b_dw.md b/model_analysis_docs/Models/vovnet/pt_ese_vovnet19b_dw.md index 82fef4dbd..5b979c709 100644 --- a/model_analysis_docs/Models/vovnet/pt_ese_vovnet19b_dw.md +++ b/model_analysis_docs/Models/vovnet/pt_ese_vovnet19b_dw.md @@ -242,11 +242,11 @@ Add Operand(type=Activation, shape=(1, 1024, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_156358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -332,11 +332,11 @@ Add Operand(type=Activation, shape=(1, 256, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_27322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -382,11 +382,11 @@ Add Operand(type=Activation, shape=(1, 512, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_47322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -442,11 +442,11 @@ Add Operand(type=Activation, shape=(1, 768, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_85322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -872,41 +872,41 @@ Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][ttnn.reshape] RuntimeError tt-metal/ttnn/cpp/ttnn/tensor/tensor_utils.cpp new_volume == old_volume Invalid arguments to reshape MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 768, 14, 14), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply @@ -1282,11 +1282,11 @@ Multiply Operand(type=Activation, shape=(1, 1024, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_157358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -1362,11 +1362,11 @@ Multiply Operand(type=Activation, shape=(1, 256, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_28322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -1422,11 +1422,11 @@ Multiply Operand(type=Activation, shape=(1, 512, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_48322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -1482,11 +1482,11 @@ Multiply Operand(type=Activation, shape=(1, 768, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_86322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -1684,9 +1684,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -1704,9 +1704,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -1724,9 +1724,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -1744,9 +1744,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -2242,21 +2242,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model diff --git a/model_analysis_docs/Models/vovnet/pt_ese_vovnet39b.md b/model_analysis_docs/Models/vovnet/pt_ese_vovnet39b.md index c98db4bc1..21108eff2 100644 --- a/model_analysis_docs/Models/vovnet/pt_ese_vovnet39b.md +++ b/model_analysis_docs/Models/vovnet/pt_ese_vovnet39b.md @@ -242,11 +242,11 @@ Add Operand(type=Activation, shape=(1, 1024, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_156358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -362,11 +362,11 @@ Add Operand(type=Activation, shape=(1, 256, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_27322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -432,11 +432,11 @@ Add Operand(type=Activation, shape=(1, 512, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_47322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -572,11 +572,11 @@ Add Operand(type=Activation, shape=(1, 768, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_85322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -1032,41 +1032,41 @@ Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][ttnn.reshape] RuntimeError tt-metal/ttnn/cpp/ttnn/tensor/tensor_utils.cpp new_volume == old_volume Invalid arguments to reshape MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 768, 14, 14), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply @@ -1432,11 +1432,11 @@ Multiply Operand(type=Activation, shape=(1, 1024, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_157358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -1532,11 +1532,11 @@ Multiply Operand(type=Activation, shape=(1, 256, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_28322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -1612,11 +1612,11 @@ Multiply Operand(type=Activation, shape=(1, 512, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_48322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -1752,11 +1752,11 @@ Multiply Operand(type=Activation, shape=(1, 768, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_86322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -1994,9 +1994,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -2014,9 +2014,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -2034,9 +2034,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -2054,9 +2054,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -2492,21 +2492,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model diff --git a/model_analysis_docs/Models/vovnet/pt_ese_vovnet99b.md b/model_analysis_docs/Models/vovnet/pt_ese_vovnet99b.md index 2a3d73724..e5832a9bd 100644 --- a/model_analysis_docs/Models/vovnet/pt_ese_vovnet99b.md +++ b/model_analysis_docs/Models/vovnet/pt_ese_vovnet99b.md @@ -242,11 +242,11 @@ Add Operand(type=Activation, shape=(1, 1024, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_156358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -312,11 +312,11 @@ Add Operand(type=Activation, shape=(1, 256, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_27322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -342,11 +342,11 @@ Add Operand(type=Activation, shape=(1, 512, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_47322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -382,11 +382,11 @@ Add Operand(type=Activation, shape=(1, 768, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_85322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Add @@ -772,41 +772,41 @@ Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][ttnn.reshape] RuntimeError tt-metal/ttnn/cpp/ttnn/tensor/tensor_utils.cpp new_volume == old_volume Invalid arguments to reshape MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 768, 14, 14), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply @@ -1172,11 +1172,11 @@ Multiply Operand(type=Activation, shape=(1, 1024, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_157358, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -1212,11 +1212,11 @@ Multiply Operand(type=Activation, shape=(1, 256, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_28322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -1252,11 +1252,11 @@ Multiply Operand(type=Activation, shape=(1, 512, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_48322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -1292,11 +1292,11 @@ Multiply Operand(type=Activation, shape=(1, 768, 1, 1), dtype=float32)
X
Operand(type=Constant, name=const_86322, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -1434,9 +1434,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -1454,9 +1454,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -1474,9 +1474,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -1494,9 +1494,9 @@ dim : -2
keep_dim : True ✅ ✅ - ✅ - + ❌ + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model ReduceAvg @@ -1932,21 +1932,21 @@ Unsqueeze Operand(type=Parameter, shape=(512,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Unsqueeze Operand(type=Parameter, shape=(1024,), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model diff --git a/model_analysis_docs/Models/vovnet/pt_vovnet27s.md b/model_analysis_docs/Models/vovnet/pt_vovnet27s.md index 949afc944..5a28f136a 100644 --- a/model_analysis_docs/Models/vovnet/pt_vovnet27s.md +++ b/model_analysis_docs/Models/vovnet/pt_vovnet27s.md @@ -672,41 +672,41 @@ Matmul Operand(type=Activation, shape=(1, 512), dtype=float32)
X
Operand(type=Activation, shape=(512, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 56, 56), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][ttnn.reshape] RuntimeError tt-metal/ttnn/cpp/ttnn/tensor/tensor_utils.cpp new_volume == old_volume Invalid arguments to reshape MaxPool2d Operand(type=Activation, shape=(1, 256, 28, 28), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 384, 14, 14), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/vovnet/pt_vovnet39.md b/model_analysis_docs/Models/vovnet/pt_vovnet39.md index 4e6e608f0..a7c8a9341 100644 --- a/model_analysis_docs/Models/vovnet/pt_vovnet39.md +++ b/model_analysis_docs/Models/vovnet/pt_vovnet39.md @@ -872,41 +872,41 @@ Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][ttnn.reshape] RuntimeError tt-metal/ttnn/cpp/ttnn/tensor/tensor_utils.cpp new_volume == old_volume Invalid arguments to reshape MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 768, 14, 14), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/vovnet/pt_vovnet57.md b/model_analysis_docs/Models/vovnet/pt_vovnet57.md index 7f36c5b9c..48cc781ab 100644 --- a/model_analysis_docs/Models/vovnet/pt_vovnet57.md +++ b/model_analysis_docs/Models/vovnet/pt_vovnet57.md @@ -1052,41 +1052,41 @@ Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][ttnn.reshape] RuntimeError tt-metal/ttnn/cpp/ttnn/tensor/tensor_utils.cpp new_volume == old_volume Invalid arguments to reshape MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 768, 14, 14), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/vovnet/pt_vovnet_39_stigma.md b/model_analysis_docs/Models/vovnet/pt_vovnet_39_stigma.md index 0071e4d66..6fe023eeb 100644 --- a/model_analysis_docs/Models/vovnet/pt_vovnet_39_stigma.md +++ b/model_analysis_docs/Models/vovnet/pt_vovnet_39_stigma.md @@ -872,41 +872,41 @@ Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][ttnn.reshape] RuntimeError tt-metal/ttnn/cpp/ttnn/tensor/tensor_utils.cpp new_volume == old_volume Invalid arguments to reshape MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 768, 14, 14), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/vovnet/vovnet_57_stigma_pt.md b/model_analysis_docs/Models/vovnet/vovnet_57_stigma_pt.md index a9ff218a4..3a30a722f 100644 --- a/model_analysis_docs/Models/vovnet/vovnet_57_stigma_pt.md +++ b/model_analysis_docs/Models/vovnet/vovnet_57_stigma_pt.md @@ -1052,41 +1052,41 @@ Matmul Operand(type=Activation, shape=(1, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 256, 56, 56), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][ttnn.reshape] RuntimeError tt-metal/ttnn/cpp/ttnn/tensor/tensor_utils.cpp new_volume == old_volume Invalid arguments to reshape MaxPool2d Operand(type=Activation, shape=(1, 512, 28, 28), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 768, 14, 14), dtype=float32) kernel_size : 3
stride : 2
padding : [0, 0, 0, 0]
dilation : 1
ceil_mode : True
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/whisper_0/pt_whisper_base.md b/model_analysis_docs/Models/whisper_0/pt_whisper_base.md index b617ed522..db500b303 100644 --- a/model_analysis_docs/Models/whisper_0/pt_whisper_base.md +++ b/model_analysis_docs/Models/whisper_0/pt_whisper_base.md @@ -76,17 +76,37 @@ ✅ ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model + + + Cast + Operand(type=Parameter, shape=(51865, 512), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 2, 512), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + Embedding - Operand(type=Activation, shape=(1, 2), dtype=int32)
X
Operand(type=Parameter, shape=(51865, 512), dtype=float32) + Operand(type=Activation, shape=(1, 2), dtype=int32)
X
Operand(type=Activation, shape=(51865, 512), dtype=bfloat16) ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Gelu @@ -232,11 +252,11 @@ Matmul Operand(type=Activation, shape=(1, 2, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 512), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/whisper_0/pt_whisper_large.md b/model_analysis_docs/Models/whisper_0/pt_whisper_large.md index 969749ac6..a94daa612 100644 --- a/model_analysis_docs/Models/whisper_0/pt_whisper_large.md +++ b/model_analysis_docs/Models/whisper_0/pt_whisper_large.md @@ -76,17 +76,37 @@ ✅ ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model + + + Cast + Operand(type=Parameter, shape=(51865, 1280), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 2, 1280), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + Embedding - Operand(type=Activation, shape=(1, 2), dtype=int32)
X
Operand(type=Parameter, shape=(51865, 1280), dtype=float32) + Operand(type=Activation, shape=(1, 2), dtype=int32)
X
Operand(type=Activation, shape=(51865, 1280), dtype=bfloat16) ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Gelu @@ -152,11 +172,11 @@ Matmul Operand(type=Activation, shape=(2, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1280), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -182,21 +202,21 @@ Matmul Operand(type=Activation, shape=(1, 2, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1280), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1500, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1280), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -232,11 +252,11 @@ Matmul Operand(type=Activation, shape=(1, 2, 5120), dtype=float32)
X
Operand(type=Activation, shape=(5120, 1280), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/whisper_0/pt_whisper_medium.md b/model_analysis_docs/Models/whisper_0/pt_whisper_medium.md index 2593d9f60..617fc747c 100644 --- a/model_analysis_docs/Models/whisper_0/pt_whisper_medium.md +++ b/model_analysis_docs/Models/whisper_0/pt_whisper_medium.md @@ -76,17 +76,37 @@ ✅ ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model + + + Cast + Operand(type=Parameter, shape=(51865, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 2, 1024), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + Embedding - Operand(type=Activation, shape=(1, 2), dtype=int32)
X
Operand(type=Parameter, shape=(51865, 1024), dtype=float32) + Operand(type=Activation, shape=(1, 2), dtype=int32)
X
Operand(type=Activation, shape=(51865, 1024), dtype=bfloat16) ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Gelu @@ -152,11 +172,11 @@ Matmul Operand(type=Activation, shape=(2, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -182,21 +202,21 @@ Matmul Operand(type=Activation, shape=(1, 2, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1500, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -232,11 +252,11 @@ Matmul Operand(type=Activation, shape=(1, 2, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -260,8 +280,8 @@ Reshape - Operand(type=Activation, shape=(1, 2), dtype=int32) - shape : (1, 2) + Operand(type=Activation, shape=(2, 1024), dtype=float32) + shape : (1, 2, 1024) ✅ ✅ ✅ @@ -270,8 +290,8 @@ Reshape - Operand(type=Activation, shape=(1, 2, 1024), dtype=float32) - shape : (2, 1024) + Operand(type=Activation, shape=(2, 1024), dtype=float32) + shape : (1, 2, 16, 64) ✅ ✅ ✅ @@ -280,8 +300,8 @@ Reshape - Operand(type=Activation, shape=(1, 2, 1024), dtype=float32) - shape : (1, 2, 16, 64) + Operand(type=Activation, shape=(1, 2), dtype=int32) + shape : (1, 2) ✅ ✅ ✅ @@ -290,8 +310,8 @@ Reshape - Operand(type=Activation, shape=(2, 1024), dtype=float32) - shape : (1, 2, 1024) + Operand(type=Activation, shape=(1, 2, 1024), dtype=float32) + shape : (2, 1024) ✅ ✅ ✅ @@ -300,7 +320,7 @@ Reshape - Operand(type=Activation, shape=(2, 1024), dtype=float32) + Operand(type=Activation, shape=(1, 2, 1024), dtype=float32) shape : (1, 2, 16, 64) ✅ ✅ @@ -480,8 +500,8 @@ Transpose - Operand(type=Activation, shape=(1, 2, 16, 64), dtype=float32) - dim0 : -3
dim1 : -2 + Operand(type=Parameter, shape=(4096, 1024), dtype=float32) + dim0 : -2
dim1 : -1 ✅ ✅ ✅ @@ -490,7 +510,7 @@ Transpose - Operand(type=Activation, shape=(16, 2, 64), dtype=float32) + Operand(type=Parameter, shape=(1024, 4096), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -500,8 +520,8 @@ Transpose - Operand(type=Activation, shape=(1, 16, 2, 64), dtype=float32) - dim0 : -2
dim1 : -1 + Operand(type=Activation, shape=(1, 2, 16, 64), dtype=float32) + dim0 : -3
dim1 : -2 ✅ ✅ ✅ @@ -510,8 +530,8 @@ Transpose - Operand(type=Activation, shape=(1, 16, 2, 64), dtype=float32) - dim0 : -3
dim1 : -2 + Operand(type=Activation, shape=(16, 2, 64), dtype=float32) + dim0 : -2
dim1 : -1 ✅ ✅ ✅ @@ -520,7 +540,7 @@ Transpose - Operand(type=Activation, shape=(16, 64, 2), dtype=float32) + Operand(type=Activation, shape=(1, 16, 2, 64), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -530,7 +550,7 @@ Transpose - Operand(type=Activation, shape=(1, 1500, 16, 64), dtype=float32) + Operand(type=Activation, shape=(1, 16, 2, 64), dtype=float32) dim0 : -3
dim1 : -2 ✅ ✅ @@ -540,7 +560,7 @@ Transpose - Operand(type=Activation, shape=(16, 1500, 64), dtype=float32) + Operand(type=Activation, shape=(16, 64, 2), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -550,8 +570,8 @@ Transpose - Operand(type=Activation, shape=(1, 16, 1500, 64), dtype=float32) - dim0 : -2
dim1 : -1 + Operand(type=Activation, shape=(1, 1500, 16, 64), dtype=float32) + dim0 : -3
dim1 : -2 ✅ ✅ ✅ @@ -560,7 +580,7 @@ Transpose - Operand(type=Activation, shape=(16, 64, 1500), dtype=float32) + Operand(type=Activation, shape=(16, 1500, 64), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -570,7 +590,7 @@ Transpose - Operand(type=Parameter, shape=(4096, 1024), dtype=float32) + Operand(type=Activation, shape=(1, 16, 1500, 64), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ @@ -580,7 +600,7 @@ Transpose - Operand(type=Parameter, shape=(1024, 4096), dtype=float32) + Operand(type=Activation, shape=(16, 64, 1500), dtype=float32) dim0 : -2
dim1 : -1 ✅ ✅ diff --git a/model_analysis_docs/Models/whisper_0/pt_whisper_small.md b/model_analysis_docs/Models/whisper_0/pt_whisper_small.md index 6bfa9ea7b..babe2dc3d 100644 --- a/model_analysis_docs/Models/whisper_0/pt_whisper_small.md +++ b/model_analysis_docs/Models/whisper_0/pt_whisper_small.md @@ -76,17 +76,37 @@ ✅ ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model + + + Cast + Operand(type=Parameter, shape=(51865, 768), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 2, 768), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + Embedding - Operand(type=Activation, shape=(1, 2), dtype=int32)
X
Operand(type=Parameter, shape=(51865, 768), dtype=float32) + Operand(type=Activation, shape=(1, 2), dtype=int32)
X
Operand(type=Activation, shape=(51865, 768), dtype=bfloat16) ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Gelu @@ -152,11 +172,11 @@ Matmul Operand(type=Activation, shape=(2, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -182,21 +202,21 @@ Matmul Operand(type=Activation, shape=(1, 2, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ✅ - - � - Matmul Operand(type=Activation, shape=(1500, 768), dtype=float32)
X
Operand(type=Activation, shape=(768, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -232,11 +252,11 @@ Matmul Operand(type=Activation, shape=(1, 2, 3072), dtype=float32)
X
Operand(type=Activation, shape=(3072, 768), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/whisper_0/pt_whisper_tiny.md b/model_analysis_docs/Models/whisper_0/pt_whisper_tiny.md index 2c8ebb073..ca968ab5f 100644 --- a/model_analysis_docs/Models/whisper_0/pt_whisper_tiny.md +++ b/model_analysis_docs/Models/whisper_0/pt_whisper_tiny.md @@ -76,17 +76,37 @@ ✅ ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model + + + Cast + Operand(type=Parameter, shape=(51865, 384), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Activation, shape=(1, 2, 384), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + Embedding - Operand(type=Activation, shape=(1, 2), dtype=int32)
X
Operand(type=Parameter, shape=(51865, 384), dtype=float32) + Operand(type=Activation, shape=(1, 2), dtype=int32)
X
Operand(type=Activation, shape=(51865, 384), dtype=bfloat16) ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Gelu @@ -232,11 +252,11 @@ Matmul Operand(type=Activation, shape=(1, 2, 1536), dtype=float32)
X
Operand(type=Activation, shape=(1536, 384), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/whisper_3/pt_whisper_large_v3_turbo.md b/model_analysis_docs/Models/whisper_3/pt_whisper_large_v3_turbo.md index eaf0cd064..b8ae48a56 100644 --- a/model_analysis_docs/Models/whisper_3/pt_whisper_large_v3_turbo.md +++ b/model_analysis_docs/Models/whisper_3/pt_whisper_large_v3_turbo.md @@ -76,17 +76,37 @@ ✅ ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model + + + Cast + Operand(type=Activation, shape=(1, 2, 1280), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(51866, 1280), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + Embedding - Operand(type=Activation, shape=(1, 2), dtype=int32)
X
Operand(type=Parameter, shape=(51866, 1280), dtype=float32) + Operand(type=Activation, shape=(1, 2), dtype=int32)
X
Operand(type=Activation, shape=(51866, 1280), dtype=bfloat16) ✅ ✅ - ❌ + ✅ + - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp weights.get_dtype() == DataType::BFLOAT16 Gelu @@ -152,11 +172,11 @@ Matmul Operand(type=Activation, shape=(2, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1280), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -182,21 +202,21 @@ Matmul Operand(type=Activation, shape=(1, 2, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1280), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul Operand(type=Activation, shape=(1500, 1280), dtype=float32)
X
Operand(type=Activation, shape=(1280, 1280), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -232,11 +252,11 @@ Matmul Operand(type=Activation, shape=(1, 2, 5120), dtype=float32)
X
Operand(type=Activation, shape=(5120, 1280), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/wideresnet/pt_wide_resnet101_2_hub.md b/model_analysis_docs/Models/wideresnet/pt_wide_resnet101_2_hub.md index f3df14be5..77a08e8e9 100644 --- a/model_analysis_docs/Models/wideresnet/pt_wide_resnet101_2_hub.md +++ b/model_analysis_docs/Models/wideresnet/pt_wide_resnet101_2_hub.md @@ -1512,21 +1512,21 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/wideresnet/pt_wide_resnet101_2_timm.md b/model_analysis_docs/Models/wideresnet/pt_wide_resnet101_2_timm.md index f3df14be5..77a08e8e9 100644 --- a/model_analysis_docs/Models/wideresnet/pt_wide_resnet101_2_timm.md +++ b/model_analysis_docs/Models/wideresnet/pt_wide_resnet101_2_timm.md @@ -1512,21 +1512,21 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/wideresnet/pt_wide_resnet50_2_hub.md b/model_analysis_docs/Models/wideresnet/pt_wide_resnet50_2_hub.md index dd7c5ad05..4f212381f 100644 --- a/model_analysis_docs/Models/wideresnet/pt_wide_resnet50_2_hub.md +++ b/model_analysis_docs/Models/wideresnet/pt_wide_resnet50_2_hub.md @@ -1002,21 +1002,21 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/wideresnet/pt_wide_resnet50_2_timm.md b/model_analysis_docs/Models/wideresnet/pt_wide_resnet50_2_timm.md index dd7c5ad05..4f212381f 100644 --- a/model_analysis_docs/Models/wideresnet/pt_wide_resnet50_2_timm.md +++ b/model_analysis_docs/Models/wideresnet/pt_wide_resnet50_2_timm.md @@ -1002,21 +1002,21 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 64, 112, 112), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/xception/pt_xception41_timm.md b/model_analysis_docs/Models/xception/pt_xception41_timm.md index ee48fbee7..18e0ca74d 100644 --- a/model_analysis_docs/Models/xception/pt_xception41_timm.md +++ b/model_analysis_docs/Models/xception/pt_xception41_timm.md @@ -1452,11 +1452,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/xception/pt_xception65_timm.md b/model_analysis_docs/Models/xception/pt_xception65_timm.md index fc8a0c5f4..0efdbf429 100644 --- a/model_analysis_docs/Models/xception/pt_xception65_timm.md +++ b/model_analysis_docs/Models/xception/pt_xception65_timm.md @@ -1932,11 +1932,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/xception/pt_xception71_timm.md b/model_analysis_docs/Models/xception/pt_xception71_timm.md index b1238705f..c49ae7ee1 100644 --- a/model_analysis_docs/Models/xception/pt_xception71_timm.md +++ b/model_analysis_docs/Models/xception/pt_xception71_timm.md @@ -2092,11 +2092,11 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3802,11 +3802,11 @@ Multiply Operand(type=Constant, name=blocks.21.stack.conv1.bn_pw.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_4041166, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3822,11 +3822,11 @@ Multiply Operand(type=Constant, name=blocks.21.stack.conv2.bn_pw.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_4101166, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply @@ -3842,11 +3842,11 @@ Multiply Operand(type=Constant, name=blocks.21.stack.conv3.bn_pw.running_mean, dtype=float32)
X
Operand(type=Constant, name=const_4161166, dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/xception/pt_xception_timm.md b/model_analysis_docs/Models/xception/pt_xception_timm.md index 2c963320f..08789801f 100644 --- a/model_analysis_docs/Models/xception/pt_xception_timm.md +++ b/model_analysis_docs/Models/xception/pt_xception_timm.md @@ -932,51 +932,51 @@ Matmul Operand(type=Activation, shape=(1, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 1000), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model MaxPool2d Operand(type=Activation, shape=(1, 128, 147, 147), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 256, 74, 74), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 728, 37, 37), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 1024, 19, 19), dtype=float32) kernel_size : 3
stride : 2
padding : [1, 1, 1, 1]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/xglm/pt_xglm_1_7B.md b/model_analysis_docs/Models/xglm/pt_xglm_1_7B.md index 5f74ba39d..4b38853de 100644 --- a/model_analysis_docs/Models/xglm/pt_xglm_1_7B.md +++ b/model_analysis_docs/Models/xglm/pt_xglm_1_7B.md @@ -98,6 +98,26 @@ + + Cast + Operand(type=Activation, shape=(1, 256, 2048), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + + + Cast + Operand(type=Parameter, shape=(256008, 2048), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Clip Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32) @@ -110,13 +130,13 @@ Embedding - Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Parameter, shape=(256008, 2048), dtype=float32) + Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Activation, shape=(256008, 2048), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Gelu @@ -192,11 +212,11 @@ Matmul Operand(type=Activation, shape=(256, 2048), dtype=float32)
X
Operand(type=Activation, shape=(2048, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -232,11 +252,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 8192), dtype=float32)
X
Operand(type=Activation, shape=(8192, 2048), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/xglm/pt_xglm_564M.md b/model_analysis_docs/Models/xglm/pt_xglm_564M.md index 759d3ac31..d94aa9e1b 100644 --- a/model_analysis_docs/Models/xglm/pt_xglm_564M.md +++ b/model_analysis_docs/Models/xglm/pt_xglm_564M.md @@ -78,6 +78,16 @@ + + Cast + Operand(type=Activation, shape=(1, 256, 1024), dtype=bfloat16) + dtype : torch.float32 + ✅ + ✅ + ✅ + + + Cast Operand(type=Activation, shape=(1, 1, 256, 256), dtype=int64) @@ -98,6 +108,16 @@ + + Cast + Operand(type=Parameter, shape=(256008, 1024), dtype=float32) + dtype : torch.bfloat16 + ✅ + ✅ + ✅ + + + Clip Operand(type=Activation, shape=(1, 1, 256, 256), dtype=float32) @@ -110,13 +130,13 @@ Embedding - Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Parameter, shape=(256008, 1024), dtype=float32) + Operand(type=Activation, shape=(1, 256), dtype=int64)
X
Operand(type=Activation, shape=(256008, 1024), dtype=bfloat16) - ✅ - ✅ - ❌ - [TT_METAL][ttnn.embedding validation] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/embedding/device/embedding_device_operation.cpp a.get_dtype() == DataType::UINT32 or a.get_dtype() == DataType::BFLOAT16 Input must be UINT32 or BFLOAT16 + + + � + Gelu @@ -192,11 +212,11 @@ Matmul Operand(type=Activation, shape=(256, 1024), dtype=float32)
X
Operand(type=Activation, shape=(1024, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul @@ -232,11 +252,11 @@ Matmul Operand(type=Activation, shape=(1, 256, 4096), dtype=float32)
X
Operand(type=Activation, shape=(4096, 1024), dtype=float32) + ✅ + ✅ + ❌ - - - � - + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Matmul diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5l_320x320.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5l_320x320.md index 200344f01..978afbe38 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5l_320x320.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5l_320x320.md @@ -1392,11 +1392,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 512, 10, 10), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5l_480x480.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5l_480x480.md index 7b242bce4..3bed03c12 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5l_480x480.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5l_480x480.md @@ -1392,11 +1392,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 512, 15, 15), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5l_640x640.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5l_640x640.md index eeb17464a..ec462c22c 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5l_640x640.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5l_640x640.md @@ -1392,11 +1392,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 512, 20, 20), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5m_320x320.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5m_320x320.md index 67a06baec..afe03e88d 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5m_320x320.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5m_320x320.md @@ -1172,11 +1172,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 384, 10, 10), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5m_480x480.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5m_480x480.md index 8df0e8990..087c7627b 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5m_480x480.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5m_480x480.md @@ -1172,11 +1172,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 384, 15, 15), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5m_640x640.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5m_640x640.md index e95dea761..604815c88 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5m_640x640.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5m_640x640.md @@ -1172,11 +1172,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 384, 20, 20), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5n_320x320.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5n_320x320.md index c1e8a0288..f621852f9 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5n_320x320.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5n_320x320.md @@ -952,11 +952,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 128, 10, 10), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5n_480x480.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5n_480x480.md index a7a68f31c..847bfaf69 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5n_480x480.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5n_480x480.md @@ -952,11 +952,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 128, 15, 15), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5n_640x640.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5n_640x640.md index a2dfc230e..75bca8287 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5n_640x640.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5n_640x640.md @@ -952,11 +952,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 128, 20, 20), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5s_1280x1280.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5s_1280x1280.md index 0bc87d62b..00051c9dd 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5s_1280x1280.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5s_1280x1280.md @@ -953,10 +953,10 @@ Operand(type=Activation, shape=(1, 256, 40, 40), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 ✅ - ❌ + ✅ ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + [TT_METAL][TT-Metal vs Forge Output Data mismatch] ValueError Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model , compiled_model Multiply diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5s_320x320.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5s_320x320.md index 3e4754aa4..bb325bc44 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5s_320x320.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5s_320x320.md @@ -952,11 +952,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 256, 10, 10), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5s_480x480.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5s_480x480.md index eab075dcf..cc77d24f2 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5s_480x480.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5s_480x480.md @@ -952,11 +952,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 256, 15, 15), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5s_640x640.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5s_640x640.md index a38932e50..6fec64399 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5s_640x640.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5s_640x640.md @@ -952,11 +952,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 256, 20, 20), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5x_320x320.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5x_320x320.md index be45b4aae..e4e372b1b 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5x_320x320.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5x_320x320.md @@ -1612,11 +1612,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 640, 10, 10), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5x_480x480.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5x_480x480.md index 1460b6828..a59470a47 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5x_480x480.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5x_480x480.md @@ -1612,11 +1612,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 640, 15, 15), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v5/pt_yolov5x_640x640.md b/model_analysis_docs/Models/yolo_v5/pt_yolov5x_640x640.md index f5f14a5d8..2c2007d07 100644 --- a/model_analysis_docs/Models/yolo_v5/pt_yolov5x_640x640.md +++ b/model_analysis_docs/Models/yolo_v5/pt_yolov5x_640x640.md @@ -1612,11 +1612,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 640, 20, 20), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v6/pt_yolov6l.md b/model_analysis_docs/Models/yolo_v6/pt_yolov6l.md index f32af1394..4d911c928 100644 --- a/model_analysis_docs/Models/yolo_v6/pt_yolov6l.md +++ b/model_analysis_docs/Models/yolo_v6/pt_yolov6l.md @@ -1802,11 +1802,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 512, 14, 20), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply @@ -2252,31 +2252,31 @@ Softmax Operand(type=Activation, shape=(1, 17, 4, 4480), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][ttnn softmax] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/moreh/moreh_softmax/device/moreh_softmax_device_operation.cpp input.get_dtype() == DataType::BFLOAT16 || input.get_dtype() == DataType::BFLOAT8_B Inputs must be of bfloat16 or bfloat8_b type Softmax Operand(type=Activation, shape=(1, 17, 4, 1120), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][ttnn softmax] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/moreh/moreh_softmax/device/moreh_softmax_device_operation.cpp input.get_dtype() == DataType::BFLOAT16 || input.get_dtype() == DataType::BFLOAT8_B Inputs must be of bfloat16 or bfloat8_b type Softmax Operand(type=Activation, shape=(1, 17, 4, 280), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][ttnn softmax] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/moreh/moreh_softmax/device/moreh_softmax_device_operation.cpp input.get_dtype() == DataType::BFLOAT16 || input.get_dtype() == DataType::BFLOAT8_B Inputs must be of bfloat16 or bfloat8_b type Subtract diff --git a/model_analysis_docs/Models/yolo_v6/pt_yolov6m.md b/model_analysis_docs/Models/yolo_v6/pt_yolov6m.md index 309cd836e..48da87040 100644 --- a/model_analysis_docs/Models/yolo_v6/pt_yolov6m.md +++ b/model_analysis_docs/Models/yolo_v6/pt_yolov6m.md @@ -1402,11 +1402,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 384, 14, 20), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply @@ -1782,31 +1782,31 @@ Softmax Operand(type=Activation, shape=(1, 17, 4, 4480), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][ttnn softmax] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/moreh/moreh_softmax/device/moreh_softmax_device_operation.cpp input.get_dtype() == DataType::BFLOAT16 || input.get_dtype() == DataType::BFLOAT8_B Inputs must be of bfloat16 or bfloat8_b type Softmax Operand(type=Activation, shape=(1, 17, 4, 1120), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][ttnn softmax] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/moreh/moreh_softmax/device/moreh_softmax_device_operation.cpp input.get_dtype() == DataType::BFLOAT16 || input.get_dtype() == DataType::BFLOAT8_B Inputs must be of bfloat16 or bfloat8_b type Softmax Operand(type=Activation, shape=(1, 17, 4, 280), dtype=float32) dim : 1 + ✅ + ✅ + ❌ - - - � - + [TT_METAL][ttnn softmax] RuntimeError tt-metal/ttnn/cpp/ttnn/operations/moreh/moreh_softmax/device/moreh_softmax_device_operation.cpp input.get_dtype() == DataType::BFLOAT16 || input.get_dtype() == DataType::BFLOAT8_B Inputs must be of bfloat16 or bfloat8_b type Subtract diff --git a/model_analysis_docs/Models/yolo_v6/pt_yolov6n.md b/model_analysis_docs/Models/yolo_v6/pt_yolov6n.md index 77b0557cd..5dc6f7205 100644 --- a/model_analysis_docs/Models/yolo_v6/pt_yolov6n.md +++ b/model_analysis_docs/Models/yolo_v6/pt_yolov6n.md @@ -872,11 +872,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 128, 14, 20), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolo_v6/pt_yolov6s.md b/model_analysis_docs/Models/yolo_v6/pt_yolov6s.md index 90fcfb3e3..e01507341 100644 --- a/model_analysis_docs/Models/yolo_v6/pt_yolov6s.md +++ b/model_analysis_docs/Models/yolo_v6/pt_yolov6s.md @@ -872,11 +872,11 @@ MaxPool2d Operand(type=Activation, shape=(1, 256, 14, 20), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolox/pt_yolox_darknet.md b/model_analysis_docs/Models/yolox/pt_yolox_darknet.md index d1f1a410e..699f82540 100644 --- a/model_analysis_docs/Models/yolox/pt_yolox_darknet.md +++ b/model_analysis_docs/Models/yolox/pt_yolox_darknet.md @@ -1752,31 +1752,31 @@ MaxPool2d Operand(type=Activation, shape=(1, 512, 20, 20), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 512, 20, 20), dtype=float32) kernel_size : 9
stride : 1
padding : [4, 4, 4, 4]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 512, 20, 20), dtype=float32) kernel_size : 13
stride : 1
padding : [6, 6, 6, 6]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolox/pt_yolox_l.md b/model_analysis_docs/Models/yolox/pt_yolox_l.md index 41d839f5b..76a2ed38f 100644 --- a/model_analysis_docs/Models/yolox/pt_yolox_l.md +++ b/model_analysis_docs/Models/yolox/pt_yolox_l.md @@ -2052,31 +2052,31 @@ MaxPool2d Operand(type=Activation, shape=(1, 512, 20, 20), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 512, 20, 20), dtype=float32) kernel_size : 9
stride : 1
padding : [4, 4, 4, 4]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 512, 20, 20), dtype=float32) kernel_size : 13
stride : 1
padding : [6, 6, 6, 6]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolox/pt_yolox_m.md b/model_analysis_docs/Models/yolox/pt_yolox_m.md index ccfddf487..ff1cf9b13 100644 --- a/model_analysis_docs/Models/yolox/pt_yolox_m.md +++ b/model_analysis_docs/Models/yolox/pt_yolox_m.md @@ -1812,31 +1812,31 @@ MaxPool2d Operand(type=Activation, shape=(1, 384, 20, 20), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 384, 20, 20), dtype=float32) kernel_size : 9
stride : 1
padding : [4, 4, 4, 4]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 384, 20, 20), dtype=float32) kernel_size : 13
stride : 1
padding : [6, 6, 6, 6]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolox/pt_yolox_nano.md b/model_analysis_docs/Models/yolox/pt_yolox_nano.md index 96503de7b..a52af6099 100644 --- a/model_analysis_docs/Models/yolox/pt_yolox_nano.md +++ b/model_analysis_docs/Models/yolox/pt_yolox_nano.md @@ -1902,31 +1902,31 @@ MaxPool2d Operand(type=Activation, shape=(1, 128, 13, 13), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 128, 13, 13), dtype=float32) kernel_size : 9
stride : 1
padding : [4, 4, 4, 4]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 128, 13, 13), dtype=float32) kernel_size : 13
stride : 1
padding : [6, 6, 6, 6]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolox/pt_yolox_s.md b/model_analysis_docs/Models/yolox/pt_yolox_s.md index 72db1a3e7..48191a626 100644 --- a/model_analysis_docs/Models/yolox/pt_yolox_s.md +++ b/model_analysis_docs/Models/yolox/pt_yolox_s.md @@ -1572,31 +1572,31 @@ MaxPool2d Operand(type=Activation, shape=(1, 256, 20, 20), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 256, 20, 20), dtype=float32) kernel_size : 9
stride : 1
padding : [4, 4, 4, 4]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 256, 20, 20), dtype=float32) kernel_size : 13
stride : 1
padding : [6, 6, 6, 6]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolox/pt_yolox_tiny.md b/model_analysis_docs/Models/yolox/pt_yolox_tiny.md index 8834af2fb..1ab67cdeb 100644 --- a/model_analysis_docs/Models/yolox/pt_yolox_tiny.md +++ b/model_analysis_docs/Models/yolox/pt_yolox_tiny.md @@ -1572,31 +1572,31 @@ MaxPool2d Operand(type=Activation, shape=(1, 192, 13, 13), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 192, 13, 13), dtype=float32) kernel_size : 9
stride : 1
padding : [4, 4, 4, 4]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 192, 13, 13), dtype=float32) kernel_size : 13
stride : 1
padding : [6, 6, 6, 6]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/Models/yolox/pt_yolox_x.md b/model_analysis_docs/Models/yolox/pt_yolox_x.md index ae07dfa07..e5a8c73bd 100644 --- a/model_analysis_docs/Models/yolox/pt_yolox_x.md +++ b/model_analysis_docs/Models/yolox/pt_yolox_x.md @@ -2292,31 +2292,31 @@ MaxPool2d Operand(type=Activation, shape=(1, 640, 20, 20), dtype=float32) kernel_size : 5
stride : 1
padding : [2, 2, 2, 2]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 640, 20, 20), dtype=float32) kernel_size : 9
stride : 1
padding : [4, 4, 4, 4]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + MaxPool2d Operand(type=Activation, shape=(1, 640, 20, 20), dtype=float32) kernel_size : 13
stride : 1
padding : [6, 6, 6, 6]
dilation : 1
ceil_mode : False
max_pool_add_sub_surround : False
max_pool_add_sub_surround_value : 1.0
channel_last : 0 - ✅ - ❌ - ❌ - [MLIR][ttnn.maxpool2d mlir pipeline] RuntimeError ttnn.max_pool2d currently only supports an input type of bfloat16 Failed to run MLIR compiler pass pipeline + + + � + Multiply diff --git a/model_analysis_docs/ModelsInfo.md b/model_analysis_docs/ModelsInfo.md index 3092fbeb0..bda94a5e6 100644 --- a/model_analysis_docs/ModelsInfo.md +++ b/model_analysis_docs/ModelsInfo.md @@ -20,563 +20,653 @@ stereo - Wrapper + pt_musicgen_small pytorch - 93 % - 93 % + 97 % + 97 % + 90 % + 3 % + Monday, 30 Dec 2024 01:35:31 PM + + + stereo + pt_musicgen_large + pytorch + 97 % + 97 % + 89 % + 3 % + Monday, 30 Dec 2024 01:35:31 PM + + + stereo + pt_musicgen_medium + pytorch + 97 % + 97 % 88 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 3 % + Monday, 30 Dec 2024 01:35:31 PM clip - pt_clip_text_model + pt_clip_vit_base_patch32_text pytorch - 93 % - 93 % - 87 % - 2 % - Thursday, 26 Dec 2024 09:25:00 PM + 92 % + 92 % + 88 % + 4 % + Monday, 30 Dec 2024 01:35:31 PM bart pt_bart pytorch - 88 % - 88 % - 78 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 91 % + 91 % + 80 % + 4 % + Monday, 30 Dec 2024 01:35:31 PM + + + llama3 + pt_Llama_3_1_8B_causal_lm + pytorch + 96 % + 94 % + 86 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM + + + llama3 + pt_Llama_3_1_8B_Instruct_causal_lm + pytorch + 96 % + 94 % + 86 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM + + + llama3 + pt_Meta_Llama_3_8B_causal_lm + pytorch + 96 % + 94 % + 86 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM + + + llama3 + pt_Meta_Llama_3_8B_Instruct_causal_lm + pytorch + 96 % + 94 % + 86 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM llama3 pt_Llama_3_2_1B_causal_lm pytorch - 92 % - 90 % - 85 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 96 % + 94 % + 87 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM + + + llama3 + pt_Llama_3_2_1B_Instruct_causal_lm + pytorch + 96 % + 94 % + 87 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM opt pt_opt_1_3b_causal_lm pytorch - 90 % - 90 % - 80 % + 91 % + 91 % + 81 % 4 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM opt pt_opt_125m_causal_lm pytorch - 90 % - 90 % - 80 % + 91 % + 91 % + 81 % 4 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM opt pt_opt_350m_causal_lm pytorch - 90 % - 90 % - 80 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 92 % + 92 % + 81 % + 3 % + Monday, 30 Dec 2024 01:35:31 PM xglm pt_xglm_1_7B pytorch - 91 % - 91 % + 93 % + 93 % 82 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM xglm pt_xglm_564M pytorch - 91 % - 91 % + 93 % + 93 % 82 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM distilbert pt_distilbert_sequence_classification pytorch - 90 % - 87 % - 82 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 92 % + 89 % + 84 % + 4 % + Monday, 30 Dec 2024 01:35:31 PM distilbert pt_distilbert_masked_lm pytorch - 90 % - 86 % - 80 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 92 % + 88 % + 85 % + 4 % + Monday, 30 Dec 2024 01:35:31 PM distilbert pt_distilbert_token_classification pytorch - 91 % - 87 % - 82 % + 92 % + 88 % + 84 % 4 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM distilbert pt_distilbert_question_answering pytorch - 87 % - 84 % - 78 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 89 % + 86 % + 80 % + 4 % + Monday, 30 Dec 2024 01:35:31 PM opt pt_opt_1_3b_qa pytorch - 88 % - 88 % - 82 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 89 % + 89 % + 83 % + 3 % + Monday, 30 Dec 2024 01:35:31 PM opt pt_opt_350m_qa pytorch - 88 % - 88 % - 82 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 90 % + 90 % + 83 % + 3 % + Monday, 30 Dec 2024 01:35:31 PM opt pt_opt_125m_seq_cls pytorch - 89 % - 89 % - 80 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 91 % + 91 % + 81 % + 3 % + Monday, 30 Dec 2024 01:35:31 PM opt pt_opt_1_3b_seq_cls pytorch - 87 % - 87 % - 78 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 91 % + 91 % + 81 % + 3 % + Monday, 30 Dec 2024 01:35:31 PM opt pt_opt_350m_seq_cls pytorch - 87 % - 87 % - 79 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 91 % + 91 % + 81 % + 3 % + Monday, 30 Dec 2024 01:35:31 PM opt pt_opt_125m_qa pytorch - 90 % - 90 % - 84 % - 2 % - Thursday, 26 Dec 2024 09:25:00 PM + 89 % + 89 % + 83 % + 3 % + Monday, 30 Dec 2024 01:35:31 PM + + + swin + pt_swinv2_tiny_patch4_window8_256 + pytorch + 97 % + 97 % + 95 % + 3 % + Monday, 30 Dec 2024 01:35:31 PM whisper_0 pt_whisper_medium pytorch - 94 % - 94 % - 90 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 92 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM whisper_0 pt_whisper_base pytorch - 99 % - 99 % - 95 % - 2 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 97 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM whisper_0 pt_whisper_large pytorch - 94 % - 94 % - 90 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 92 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM whisper_3 pt_whisper_large_v3_turbo pytorch - 94 % - 94 % - 90 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 92 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM whisper_0 pt_whisper_small pytorch + 100 % + 100 % 94 % - 94 % - 90 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM whisper_0 pt_whisper_tiny pytorch - 99 % - 99 % - 95 % - 2 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 97 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM vilt pt_ViLt_maskedlm pytorch - 96 % - 96 % - 96 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 94 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM vilt pt_ViLt_question_answering pytorch + 100 % + 100 % 92 % - 92 % - 92 % - 9 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM roberta pt_roberta_sentiment pytorch - 87 % - 87 % - 79 % - 8 % - Thursday, 26 Dec 2024 09:25:00 PM + 90 % + 90 % + 81 % + 6 % + Monday, 30 Dec 2024 01:35:31 PM squeezebert pt_squeezebert pytorch - 95 % - 95 % - 90 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 94 % + 94 % + 89 % + 5 % + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_xlarge_v2_token_cls pytorch - 88 % - 88 % - 82 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 89 % + 89 % + 83 % + 6 % + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_large_v2_token_cls pytorch - 89 % - 89 % - 84 % + 90 % + 90 % + 85 % 6 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_xxlarge_v2_masked_lm pytorch - 86 % - 86 % - 81 % - 9 % - Thursday, 26 Dec 2024 09:25:00 PM + 91 % + 91 % + 82 % + 5 % + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_xxlarge_v1_token_cls pytorch - 85 % - 85 % - 80 % - 10 % - Thursday, 26 Dec 2024 09:25:00 PM + 90 % + 90 % + 81 % + 6 % + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_xlarge_v2_masked_lm pytorch - 89 % - 89 % - 83 % + 90 % + 90 % + 84 % 6 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_large_v1_masked_lm pytorch - 90 % - 90 % - 85 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 91 % + 91 % + 86 % + 5 % + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_base_v1_token_cls pytorch - 89 % - 89 % - 84 % + 90 % + 90 % + 88 % 6 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_base_v1_masked_lm pytorch - 90 % - 90 % - 85 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 91 % + 91 % + 89 % + 5 % + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_xxlarge_v2_token_cls pytorch - 85 % - 85 % - 80 % - 10 % - Thursday, 26 Dec 2024 09:25:00 PM + 90 % + 90 % + 81 % + 6 % + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_xlarge_v1_masked_lm pytorch - 89 % - 89 % - 83 % + 90 % + 90 % + 84 % 6 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_large_v2_masked_lm pytorch - 90 % - 90 % - 85 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 91 % + 91 % + 86 % + 5 % + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_xlarge_v1_token_cls pytorch - 88 % - 88 % - 82 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 89 % + 89 % + 83 % + 6 % + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_base_v2_token_cls pytorch - 89 % - 89 % - 84 % + 90 % + 90 % + 88 % 6 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_large_v1_token_cls pytorch - 89 % - 89 % - 84 % + 90 % + 90 % + 85 % 6 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_base_v2_masked_lm pytorch - 90 % - 90 % - 85 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 91 % + 91 % + 89 % + 5 % + Monday, 30 Dec 2024 01:35:31 PM albert pt_albert_xxlarge_v1_masked_lm pytorch - 86 % - 86 % - 81 % - 9 % - Thursday, 26 Dec 2024 09:25:00 PM + 91 % + 91 % + 82 % + 5 % + Monday, 30 Dec 2024 01:35:31 PM bert pt_bert_sequence_classification pytorch - 88 % - 88 % - 81 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 87 % + 87 % + 83 % + 7 % + Monday, 30 Dec 2024 01:35:31 PM + + + mistral + pt_Mistral_7B_v0_1 + pytorch + 99 % + 99 % + 98 % + 1 % + Monday, 30 Dec 2024 01:35:31 PM bert pt_bert_masked_lm pytorch - 87 % - 87 % - 80 % + 88 % + 88 % + 86 % 7 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM dpr pt_dpr_ctx_encoder_multiset_base pytorch - 94 % - 94 % - 87 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 92 % + 92 % + 90 % + 7 % + Monday, 30 Dec 2024 01:35:31 PM dpr pt_dpr_question_encoder_multiset_base - pytorch - 94 % - 94 % - 87 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + pytorch + 92 % + 92 % + 90 % + 7 % + Monday, 30 Dec 2024 01:35:31 PM dpr pt_dpr_reader_multiset_base pytorch - 87 % - 87 % - 82 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 88 % + 88 % + 85 % + 5 % + Monday, 30 Dec 2024 01:35:31 PM dpr pt_dpr_ctx_encoder_single_nq_base pytorch - 94 % - 94 % - 87 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 92 % + 92 % + 90 % + 7 % + Monday, 30 Dec 2024 01:35:31 PM dpr pt_dpr_question_encoder_single_nq_base pytorch - 94 % - 94 % - 87 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 92 % + 92 % + 90 % + 7 % + Monday, 30 Dec 2024 01:35:31 PM dpr pt_dpr_reader_single_nq_base pytorch - 87 % - 87 % - 82 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 88 % + 88 % + 85 % + 5 % + Monday, 30 Dec 2024 01:35:31 PM roberta pt_roberta_masked_lm pytorch - 87 % - 87 % - 80 % - 8 % - Thursday, 26 Dec 2024 09:25:00 PM + 90 % + 90 % + 85 % + 6 % + Monday, 30 Dec 2024 01:35:31 PM codegen pt_codegen_350M_mono pytorch - 96 % - 96 % - 91 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 93 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM segformer pt_segformer_b0_finetuned_ade_512_512 pytorch - 98 % - 98 % + 99 % + 99 % 96 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM segformer @@ -585,28 +675,28 @@ 100 % 100 % 98 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM gptneo pt_gpt_neo_1_3B_causal_lm pytorch + 92 % 89 % - 86 % - 74 % - 12 % - Thursday, 26 Dec 2024 09:25:00 PM + 76 % + 5 % + Monday, 30 Dec 2024 01:35:31 PM bert pt_bert_qa pytorch - 83 % - 83 % - 77 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 85 % + 85 % + 79 % + 6 % + Monday, 30 Dec 2024 01:35:31 PM phi2 @@ -614,9 +704,9 @@ pytorch 97 % 97 % - 90 % + 92 % 0 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM phi2 @@ -624,369 +714,429 @@ pytorch 97 % 97 % - 90 % + 92 % 0 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM falcon pt_falcon pytorch - 89 % - 89 % + 96 % + 96 % 88 % - 8 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM fuyu_8b pt_fuyu_8b pytorch - 90 % - 90 % + 97 % + 97 % 89 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM + + + gemma_2b + pt_gemma_2b + pytorch + 93 % + 93 % + 90 % + 2 % + Monday, 30 Dec 2024 01:35:31 PM gpt2 pt_gpt2_generation pytorch 90 % - 88 % - 79 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 89 % + 80 % + 4 % + Monday, 30 Dec 2024 01:35:31 PM gptneo pt_gpt_neo_125M_causal_lm pytorch + 92 % 89 % - 86 % - 74 % - 12 % - Thursday, 26 Dec 2024 09:25:00 PM + 76 % + 5 % + Monday, 30 Dec 2024 01:35:31 PM segformer pt_segformer_b2_finetuned_ade_512_512 pytorch - 98 % - 98 % + 99 % + 99 % 95 % - 2 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM segformer pt_segformer_b4_finetuned_ade_512_512 pytorch - 98 % - 98 % + 99 % + 99 % 95 % - 2 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM segformer pt_segformer_b3_finetuned_ade_512_512 pytorch - 98 % - 98 % + 99 % + 99 % 95 % - 2 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM segformer pt_mit_b1 pytorch - 99 % - 99 % - 96 % - 2 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 95 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM segformer pt_mit_b2 pytorch - 99 % - 99 % - 96 % - 2 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 95 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM segformer pt_mit_b5 pytorch - 99 % - 99 % - 96 % - 2 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 95 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM segformer pt_mit_b3 pytorch - 99 % - 99 % - 96 % - 2 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 95 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM segformer pt_mit_b4 pytorch - 99 % - 99 % - 96 % - 2 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 95 % + 0 % + Monday, 30 Dec 2024 01:35:31 PM segformer pt_segformer_b1_finetuned_ade_512_512 pytorch - 98 % - 98 % + 99 % + 99 % 94 % - 2 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM gptneo pt_gpt_neo_2_7B_causal_lm pytorch - 93 % - 91 % - 74 % - 8 % - Thursday, 26 Dec 2024 09:25:00 PM + 92 % + 89 % + 76 % + 5 % + Monday, 30 Dec 2024 01:35:31 PM llama3 - pt_Llama_3_2_1B_seq_cls + pt_Llama_3_2_1B_Instruct_seq_cls pytorch + 94 % + 94 % 90 % + 2 % + Monday, 30 Dec 2024 01:35:31 PM + + + llama3 + pt_Llama_3_1_8B_Instruct_seq_cls + pytorch + 94 % + 94 % + 87 % + 2 % + Monday, 30 Dec 2024 01:35:31 PM + + + llama3 + pt_Meta_Llama_3_8B_seq_cls + pytorch + 94 % + 94 % + 87 % + 2 % + Monday, 30 Dec 2024 01:35:31 PM + + + llama3 + pt_Meta_Llama_3_8B_Instruct_seq_cls + pytorch + 94 % + 94 % + 87 % + 2 % + Monday, 30 Dec 2024 01:35:31 PM + + + llama3 + pt_Llama_3_2_1B_seq_cls + pytorch + 94 % + 94 % 90 % - 88 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM + + + llama3 + pt_Llama_3_1_8B_seq_cls + pytorch + 94 % + 94 % + 87 % + 2 % + Monday, 30 Dec 2024 01:35:31 PM phi2 pt_phi_2_pytdml_token_cls pytorch - 92 % - 92 % + 95 % + 95 % 90 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM phi2 pt_phi_2_token_cls pytorch - 92 % - 92 % + 95 % + 95 % 90 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM phi2 pt_phi_2_pytdml_seq_cls pytorch + 95 % + 95 % 92 % - 92 % - 90 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM phi2 pt_phi_2_seq_cls pytorch + 95 % + 95 % 92 % - 92 % - 90 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen pt_qwen_causal_lm pytorch - 93 % - 93 % + 95 % + 95 % 92 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen pt_qwen_chat pytorch - 93 % - 93 % + 95 % + 95 % 92 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen_v2 pt_Qwen_Qwen2_5_0_5B pytorch - 92 % - 92 % + 94 % + 94 % 91 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen_v2 pt_Qwen_Qwen2_5_1_5B pytorch - 92 % - 92 % + 94 % + 94 % 91 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen_v2 pt_Qwen_Qwen2_5_3B pytorch - 92 % - 92 % + 94 % + 94 % 91 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen_v2 pt_Qwen_Qwen2_5_7B pytorch - 88 % - 88 % + 94 % + 94 % 87 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen_coder pt_Qwen_Qwen2_5_Coder_1_5B pytorch - 92 % - 92 % + 94 % + 94 % 91 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen_coder pt_Qwen_Qwen2_5_Coder_1_5B_Instruct pytorch - 92 % - 92 % + 94 % + 94 % 91 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen_coder pt_Qwen_Qwen2_5_Coder_7B_Instruct pytorch - 88 % - 88 % + 94 % + 94 % 87 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen_coder pt_Qwen_Qwen2_5_Coder_3B pytorch - 92 % - 92 % + 94 % + 94 % 91 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen_coder pt_Qwen_Qwen2_5_Coder_7B pytorch - 88 % - 88 % + 94 % + 94 % 87 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen_coder pt_Qwen_Qwen2_5_Coder_0_5B pytorch - 92 % - 92 % - 91 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 94 % + 94 % + 93 % + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen_coder pt_Qwen_Qwen2_5_Coder_3B_Instruct pytorch - 92 % - 92 % + 94 % + 94 % 91 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen_v2 pt_Qwen_Qwen2_5_1_5B_Instruct pytorch - 92 % - 92 % + 94 % + 94 % 91 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen_v2 pt_Qwen_Qwen2_5_3B_Instruct pytorch - 92 % - 92 % + 94 % + 94 % 91 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen_v2 pt_Qwen_Qwen2_5_0_5B_Instruct pytorch - 92 % - 92 % + 94 % + 94 % 91 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM qwen_v2 pt_Qwen_Qwen2_5_7B_Instruct pytorch - 88 % - 88 % + 94 % + 94 % 87 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM autoencoder @@ -996,87 +1146,87 @@ 100 % 100 % 0 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM t5 pt_google_flan_t5_small pytorch - 96 % - 96 % - 92 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 99 % + 99 % + 93 % + 2 % + Monday, 30 Dec 2024 01:35:31 PM t5 pt_t5_base pytorch - 94 % - 94 % + 99 % + 99 % 91 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM t5 pt_t5_large pytorch - 94 % - 94 % + 99 % + 99 % 91 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM t5 pt_google_flan_t5_base pytorch - 93 % - 93 % - 89 % - 8 % - Thursday, 26 Dec 2024 09:25:00 PM + 99 % + 99 % + 90 % + 2 % + Monday, 30 Dec 2024 01:35:31 PM t5 pt_t5_small pytorch - 96 % - 96 % + 98 % + 98 % 92 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM perceiverio pt_vision_perceiver_conv pytorch - 92 % - 91 % + 99 % + 99 % 91 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM perceiverio pt_vision_perceiver_learned pytorch - 90 % - 90 % + 97 % + 97 % 89 % - 8 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM perceiverio pt_vision_perceiver_fourier pytorch - 90 % - 90 % + 98 % + 98 % 88 % - 9 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM nbeats @@ -1086,7 +1236,7 @@ 100 % 100 % 0 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM nbeats @@ -1096,147 +1246,147 @@ 100 % 100 % 0 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM nbeats nbeats_seasonality pytorch + 87 % + 87 % 80 % - 80 % - 80 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM alexnet pt_alexnet_torchhub pytorch 93 % - 85 % + 93 % 83 % 8 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM rcnn pt_rcnn pytorch 96 % - 88 % + 96 % 86 % 5 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM yolox pt_yolox_tiny pytorch - 100 % 99 % 99 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 99 % + 1 % + Monday, 30 Dec 2024 01:35:31 PM yolox pt_yolox_nano pytorch - 100 % 99 % 99 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 99 % + 1 % + Monday, 30 Dec 2024 01:35:31 PM vgg pt_vgg16_osmr pytorch - 91 % - 80 % + 96 % + 96 % 77 % - 10 % - Thursday, 26 Dec 2024 09:25:00 PM + 5 % + Monday, 30 Dec 2024 01:35:31 PM vgg pt_bn_vgg19_osmr pytorch - 98 % - 93 % + 99 % + 99 % 92 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM vgg pt_vgg_bn19_torchhub pytorch - 97 % - 92 % + 99 % + 99 % 91 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM vgg pt_vgg13_osmr pytorch - 91 % - 80 % + 96 % + 96 % 77 % - 10 % - Thursday, 26 Dec 2024 09:25:00 PM + 5 % + Monday, 30 Dec 2024 01:35:31 PM vgg pt_bn_vgg19b_osmr pytorch - 97 % - 92 % + 99 % + 99 % 91 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:31 PM vgg pt_vgg11_osmr pytorch - 91 % - 79 % + 96 % + 96 % 76 % - 10 % - Thursday, 26 Dec 2024 09:25:00 PM + 5 % + Monday, 30 Dec 2024 01:35:31 PM vgg pt_vgg_19_hf pytorch - 92 % - 81 % + 96 % + 96 % 79 % - 9 % - Thursday, 26 Dec 2024 09:25:00 PM + 5 % + Monday, 30 Dec 2024 01:35:31 PM vgg pt_vgg19_osmr pytorch - 91 % - 80 % + 96 % + 96 % 77 % - 10 % - Thursday, 26 Dec 2024 09:25:00 PM + 5 % + Monday, 30 Dec 2024 01:35:31 PM deit pt_deit_base_patch16_224 pytorch + 98 % + 98 % 92 % - 92 % - 90 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM deit @@ -1246,27 +1396,27 @@ 98 % 96 % 0 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:31 PM deit pt_deit_small_patch16_224 pytorch - 96 % - 96 % + 98 % + 98 % 94 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM deit pt_deit_base_distilled_patch16_224 pytorch + 98 % + 98 % 92 % - 92 % - 90 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM densenet @@ -1275,8 +1425,8 @@ 100 % 100 % 100 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:31 PM densenet @@ -1285,8 +1435,8 @@ 100 % 100 % 100 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM densenet @@ -1295,8 +1445,8 @@ 100 % 100 % 100 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM densenet @@ -1305,8 +1455,8 @@ 100 % 100 % 100 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM efficientnet @@ -1315,8 +1465,8 @@ 100 % 100 % 97 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM efficientnet @@ -1324,9 +1474,9 @@ pytorch 100 % 100 % - 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 97 % + 0 % + Monday, 30 Dec 2024 01:35:32 PM efficientnet @@ -1335,8 +1485,8 @@ 100 % 100 % 97 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM efficientnet @@ -1344,29 +1494,29 @@ pytorch 100 % 100 % - 100 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 98 % + 0 % + Monday, 30 Dec 2024 01:35:32 PM ghostnet pt_ghostnet_100 pytorch - 97 % - 97 % - 97 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 96 % + 0 % + Monday, 30 Dec 2024 01:35:32 PM googlenet pt_googlenet pytorch - 100 % - 98 % + 99 % + 99 % 97 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:32 PM hrnet @@ -1375,178 +1525,178 @@ 99 % 99 % 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_timm_hrnet_w40 pytorch + 100 % + 100 % 96 % - 96 % - 96 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_timm_hrnet_w64 pytorch + 100 % + 100 % 96 % - 96 % - 96 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_osmr_hrnetv2_w64 pytorch + 100 % + 100 % 99 % - 99 % - 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_timm_hrnet_w32 pytorch - 96 % - 96 % + 100 % + 100 % 95 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_timm_hrnet_w18_small pytorch - 97 % - 97 % + 99 % + 99 % 96 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_timm_hrnet_w18 pytorch + 100 % + 100 % 96 % - 96 % - 96 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_timm_hrnet_w18_small_v2 pytorch + 99 % + 99 % 97 % - 97 % - 97 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_osmr_hrnetv2_w18 pytorch + 100 % + 100 % 99 % - 99 % - 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_osmr_hrnetv2_w44 pytorch + 100 % + 100 % 99 % - 99 % - 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_osmr_hrnetv2_w48 pytorch + 100 % + 100 % 99 % - 99 % - 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_osmr_hrnetv2_w32 pytorch + 100 % + 100 % 99 % - 99 % - 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_osmr_hrnetv2_w30 pytorch + 100 % + 100 % 99 % - 99 % - 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_timm_hrnet_w44 pytorch + 100 % + 100 % 96 % - 96 % - 96 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_timm_hrnet_w48 pytorch + 100 % + 100 % 96 % - 96 % - 96 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_osmr_hrnet_w18_small_v1 pytorch + 99 % + 99 % 98 % - 98 % - 98 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_osmr_hrnetv2_w40 pytorch + 100 % + 100 % 99 % - 99 % - 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM hrnet pt_hrnet_timm_hrnet_w30 pytorch + 100 % + 100 % 96 % - 96 % - 96 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM inception_v4 @@ -1556,7 +1706,7 @@ 99 % 98 % 1 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:32 PM inception_v4 @@ -1566,77 +1716,77 @@ 99 % 98 % 1 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:32 PM mlp_mixer pt_mixer_b32_224 pytorch - 94 % - 94 % - 91 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 88 % + 0 % + Monday, 30 Dec 2024 01:35:32 PM mlp_mixer pt_mixer_l32_224 pytorch - 91 % - 91 % - 88 % - 10 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 85 % + 0 % + Monday, 30 Dec 2024 01:35:32 PM mlp_mixer pt_mixer_b16_224 pytorch - 94 % - 94 % - 91 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 88 % + 0 % + Monday, 30 Dec 2024 01:35:32 PM mlp_mixer pt_mixer_s32_224 pytorch - 91 % - 91 % - 88 % - 10 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 85 % + 0 % + Monday, 30 Dec 2024 01:35:32 PM mlp_mixer pt_mixer_b16_224_miil pytorch - 94 % - 94 % - 91 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 88 % + 0 % + Monday, 30 Dec 2024 01:35:32 PM mlp_mixer pt_mixer_s16_224 pytorch - 91 % - 91 % - 88 % - 10 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 85 % + 0 % + Monday, 30 Dec 2024 01:35:32 PM mlp_mixer pt_mixer_l16_224 pytorch - 91 % - 91 % - 88 % - 10 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 85 % + 0 % + Monday, 30 Dec 2024 01:35:32 PM mobilenet_v2 @@ -1645,58 +1795,58 @@ 100 % 100 % 100 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM mobilenet_v2 mobilenetv2_basic pytorch + 100 % + 100 % 94 % - 94 % - 94 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM mobilenet_v3 pt_mobilenetv3_small_100 pytorch - 96 % - 96 % - 96 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 94 % + 0 % + Monday, 30 Dec 2024 01:35:32 PM mobilenet_v3 pt_mobilenetv3_large_100 pytorch - 97 % - 97 % - 97 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 96 % + 0 % + Monday, 30 Dec 2024 01:35:32 PM mobilenet_v3 pt_mobilenet_v3_large pytorch - 94 % - 94 % + 100 % + 100 % 93 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM mobilenet_v3 pt_mobilenet_v3_small pytorch - 94 % - 94 % + 100 % + 100 % 92 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM regnet @@ -1705,8 +1855,8 @@ 100 % 100 % 98 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM resnet @@ -1715,8 +1865,8 @@ 100 % 100 % 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM resnet @@ -1725,8 +1875,8 @@ 100 % 100 % 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM resnext @@ -1735,8 +1885,8 @@ 100 % 100 % 100 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM resnext @@ -1745,18 +1895,18 @@ 100 % 100 % 100 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM resnext pt_resnext14_osmr pytorch 100 % - 99 % + 100 % 98 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM resnext @@ -1765,8 +1915,8 @@ 100 % 100 % 100 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM resnext @@ -1775,8 +1925,8 @@ 100 % 100 % 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM resnext @@ -1785,138 +1935,128 @@ 100 % 100 % 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM resnext pt_resnext26_osmr pytorch 100 % + 100 % 99 % - 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM - - - swin - pt_swin_tiny_patch4_window7_224 - pytorch - 89 % - 89 % - 88 % - 12 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM vgg pt_vgg19_bn_timm pytorch - 98 % - 93 % + 99 % + 99 % 92 % - 3 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:32 PM vit pt_vit_base_patch16_224 pytorch + 98 % + 98 % 92 % - 92 % - 90 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM vit pt_vit_large_patch16_224 pytorch - 90 % - 90 % + 98 % + 98 % 87 % - 9 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM vovnet pt_vovnet57 pytorch 100 % - 99 % + 100 % 98 % 1 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:32 PM vovnet pt_ese_vovnet39b pytorch - 96 % - 95 % - 94 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 93 % + 1 % + Monday, 30 Dec 2024 01:35:32 PM vovnet pt_vovnet_39_stigma pytorch 100 % - 99 % + 100 % 98 % 1 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:32 PM vovnet pt_vovnet39 pytorch 100 % - 99 % + 100 % 98 % 1 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:32 PM vovnet pt_ese_vovnet99b pytorch - 95 % - 93 % - 92 % - 6 % - Thursday, 26 Dec 2024 09:25:00 PM + 99 % + 99 % + 90 % + 2 % + Monday, 30 Dec 2024 01:35:32 PM vovnet pt_vovnet27s pytorch - 100 % - 98 % + 99 % + 99 % 98 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:32 PM vovnet pt_ese_vovnet19b_dw pytorch - 96 % - 94 % - 94 % - 5 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 92 % + 1 % + Monday, 30 Dec 2024 01:35:32 PM vovnet vovnet_57_stigma_pt pytorch 100 % - 99 % + 100 % 98 % 1 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:32 PM wideresnet @@ -1925,8 +2065,8 @@ 100 % 100 % 100 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM wideresnet @@ -1935,8 +2075,8 @@ 100 % 100 % 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM wideresnet @@ -1945,8 +2085,8 @@ 100 % 100 % 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM wideresnet @@ -1955,8 +2095,8 @@ 100 % 100 % 100 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM xception @@ -1965,18 +2105,18 @@ 100 % 100 % 100 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM xception pt_xception_timm pytorch - 100 % - 98 % + 99 % + 99 % 98 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:32 PM xception @@ -1985,8 +2125,8 @@ 100 % 100 % 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM xception @@ -1995,118 +2135,118 @@ 100 % 100 % 99 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM autoencoder pt_conv_ae pytorch - 90 % 79 % 79 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 79 % + 11 % + Monday, 30 Dec 2024 01:35:32 PM mlp_mixer pt_mixer_b16_224_miil_in21k pytorch - 97 % - 97 % - 94 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 91 % + 0 % + Monday, 30 Dec 2024 01:35:32 PM mlp_mixer pt_mixer_b16_224_in21k pytorch - 97 % - 97 % - 94 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 91 % + 0 % + Monday, 30 Dec 2024 01:35:32 PM mobilenet_v2 mobilenetv2_224 pytorch 100 % + 99 % 98 % - 98 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM dla pt_dla46x_c pytorch 100 % - 99 % + 100 % 98 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM dla pt_dla60x_c pytorch 100 % - 99 % + 100 % 98 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM dla pt_dla46_c pytorch 100 % - 99 % + 100 % 98 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM dla pt_dla169 pytorch - 99 % - 98 % + 100 % + 100 % 98 % - 2 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM dla pt_dla102 pytorch 100 % - 99 % + 100 % 99 % 1 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:32 PM dla pt_dla60 pytorch 100 % + 100 % 99 % - 99 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM dla pt_dla34 pytorch - 100 % - 98 % + 99 % + 99 % 98 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 2 % + Monday, 30 Dec 2024 01:35:32 PM mobilenet_v1 @@ -2116,37 +2256,37 @@ 100 % 100 % 0 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:32 PM mobilenet_v1 pt_mobilenet_v1_224 pytorch - 99 % - 96 % + 100 % + 97 % 96 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM mobilenet_v2 mobilenetv2_deeplabv3 pytorch + 96 % 95 % 94 % - 94 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM monodle pt_monodle pytorch - 99 % - 97 % + 98 % + 98 % 97 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM retinanet @@ -2155,8 +2295,8 @@ 99 % 99 % 98 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM retinanet @@ -2165,18 +2305,18 @@ 99 % 99 % 98 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM retinanet pt_retinanet_rn152fpn pytorch + 100 % + 100 % 96 % - 96 % - 96 % - 4 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM retinanet @@ -2185,18 +2325,18 @@ 100 % 100 % 99 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM retinanet pt_retinanet_rn50fpn pytorch - 100 % 99 % 99 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 99 % + 1 % + Monday, 30 Dec 2024 01:35:32 PM ssd300_resnet50 @@ -2206,17 +2346,17 @@ 100 % 98 % 1 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:32 PM unet pt_unet_torchhub pytorch 97 % - 94 % + 97 % 93 % 0 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:32 PM unet @@ -2225,78 +2365,78 @@ 99 % 99 % 98 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM unet pt_unet_cityscapes_osmr pytorch 95 % - 91 % + 95 % 87 % 1 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:32 PM yolox pt_yolox_darknet pytorch - 100 % + 99 % 99 % 97 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolox pt_yolox_l pytorch - 100 % 99 % 99 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 99 % + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolox pt_yolox_s pytorch - 100 % 99 % 99 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 99 % + 1 % + Monday, 30 Dec 2024 01:35:32 PM dla pt_dla102x2 pytorch 100 % - 99 % + 100 % 99 % 1 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:32 PM dla pt_dla60x pytorch 100 % + 100 % 99 % - 99 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM dla pt_dla102x pytorch 100 % - 99 % + 100 % 98 % 1 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:32 PM mobilenet_v1 @@ -2305,118 +2445,118 @@ 93 % 90 % 89 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM mobilenet_v2 mobilenetv2_160 pytorch 93 % + 92 % 91 % - 91 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM mobilenet_v2 mobilenetv2_96 pytorch 94 % + 93 % 92 % - 92 % - 1 % - Thursday, 26 Dec 2024 09:25:00 PM + 0 % + Monday, 30 Dec 2024 01:35:32 PM yolox pt_yolox_m pytorch - 100 % 99 % 99 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 99 % + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolox pt_yolox_x pytorch - 100 % + 99 % 99 % 98 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM fpn pt_fpn pytorch - 95 % + 92 % 92 % 87 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 3 % + Monday, 30 Dec 2024 01:35:32 PM mlp_mixer pt_mixer_l16_224_in21k pytorch - 94 % - 94 % - 91 % - 7 % - Thursday, 26 Dec 2024 09:25:00 PM + 100 % + 100 % + 88 % + 0 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 pt_yolov5m_640x640 pytorch - 100 % + 99 % 99 % 98 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 pt_yolov5m_320x320 pytorch - 100 % 99 % 99 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 99 % + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 pt_yolov5n_640x640 pytorch - 100 % + 99 % 99 % 98 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 pt_yolov5s_320x320 pytorch - 100 % 99 % 99 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 99 % + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 pt_yolov5n_320x320 pytorch - 100 % 99 % 99 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 99 % + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 @@ -2425,8 +2565,8 @@ 100 % 100 % 100 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 @@ -2435,8 +2575,8 @@ 100 % 100 % 92 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 @@ -2445,18 +2585,18 @@ 100 % 100 % 100 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 pt_yolov5s_640x640 pytorch - 100 % + 99 % 99 % 98 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 @@ -2465,38 +2605,38 @@ 100 % 100 % 97 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 pt_yolov5s_1280x1280 pytorch 100 % - 99 % + 100 % 94 % 0 % - Thursday, 26 Dec 2024 09:25:00 PM + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 pt_yolov5m_480x480 pytorch - 100 % 99 % 99 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 99 % + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 pt_yolov5s_480x480 pytorch - 100 % + 99 % 99 % 94 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 @@ -2505,18 +2645,18 @@ 100 % 100 % 98 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 pt_yolov5n_480x480 pytorch - 100 % + 99 % 99 % 97 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v5 @@ -2525,48 +2665,48 @@ 100 % 100 % 99 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v6 pt_yolov6n pytorch - 99 % + 98 % 98 % 95 % - 0 % - Thursday, 26 Dec 2024 09:25:00 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v6 pt_yolov6m pytorch - 98 % - 97 % + 99 % + 99 % 96 % - 2 % - Thursday, 26 Dec 2024 09:25:01 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v6 pt_yolov6s pytorch - 99 % + 98 % 98 % 95 % - 0 % - Thursday, 26 Dec 2024 09:25:01 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM yolo_v6 pt_yolov6l pytorch - 98 % - 98 % + 99 % + 99 % 96 % - 2 % - Thursday, 26 Dec 2024 09:25:01 PM + 1 % + Monday, 30 Dec 2024 01:35:32 PM