diff --git a/PFR.lean b/PFR.lean index a87e9795..de6b24f6 100644 --- a/PFR.lean +++ b/PFR.lean @@ -2,6 +2,7 @@ import PFR.ApproxHomPFR import PFR.BoundingMutual import PFR.Endgame import PFR.EntropyPFR +import PFR.Examples import PFR.Fibring import PFR.FirstEstimate import PFR.ForMathlib.AffineSpaceDim diff --git a/examples.lean b/PFR/Examples.lean similarity index 98% rename from examples.lean rename to PFR/Examples.lean index e1ae47cf..51d55c86 100644 --- a/examples.lean +++ b/PFR/Examples.lean @@ -32,9 +32,8 @@ example {A : Set G} {K : ℝ} (h₀A : A.Nonempty) (hA : Nat.card (A + A) ≤ K /-- The even more improved version -/ example {A : Set G} {K : ℝ} (h₀A : A.Nonempty) (hA : Nat.card (A + A) ≤ K * Nat.card A) : ∃ (H : Submodule (ZMod 2) G) (c : Set G), - Nat.card c < 2 * K ^ 9 ∧ Nat.card H ≤ Nat.card A ∧ A ⊆ c + H := by - convert better_PFR_conjecture h₀A hA - norm_cast + Nat.card c < 2 * K ^ 9 ∧ Nat.card H ≤ Nat.card A ∧ A ⊆ c + H := + better_PFR_conjecture h₀A hA #print axioms better_PFR_conjecture @@ -200,7 +199,7 @@ example {a : ℝ≥0∞} (ha : a < ∞) : a + 3 < ∞ := by finiteness example (a : ℝ) : (ENNReal.ofReal (1 + a ^ 2))⁻¹ < ∞ := by finiteness -example (f : α → ℕ) : ∀ i, (f i : ℝ≥0∞) ≠ ∞ := by finiteness +example {α : Type*} (f : α → ℕ) : ∀ i, (f i : ℝ≥0∞) ≠ ∞ := by finiteness open MeasureTheory @@ -208,5 +207,4 @@ example {Ω Ω' : Type*} [MeasurableSpace Ω] (ν : Measure Ω) [IsFiniteMeasure (ν' : Measure Ω') [IsFiniteMeasure ν'] (E : Set (Ω × Ω')) : (ν.prod ν') E < ∞ := by finiteness - end Finiteness