From e2cb52c45f72ebbc7e269e338fcf56a6868a3c1f Mon Sep 17 00:00:00 2001 From: Terence Tao Date: Sun, 18 Aug 2024 10:18:11 -0700 Subject: [PATCH] add \uses --- PFR/TorsionEndgame.lean | 10 +++++----- blueprint/src/chapter/torsion.tex | 2 +- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/PFR/TorsionEndgame.lean b/PFR/TorsionEndgame.lean index 1b2afee3..e438b1cf 100644 --- a/PFR/TorsionEndgame.lean +++ b/PFR/TorsionEndgame.lean @@ -55,16 +55,16 @@ lemma mutual_information_le_t_13 : I[ Z1 : Z3 | W] ≤ 4 * (p.m)^2 * p.η * k := lemma mutual_information_le_t_23 : I[ Z2 : Z3 | W] ≤ 4 * (p.m)^2 * p.η * k := sorry -/-- We let $\bbH[W] \leq (2m-1)k + \frac1m \sum_{i=1}^m \bbH[X_i]$. -/ +/-- We have $\bbH[W] \leq (2m-1)k + \frac1m \sum_{i=1}^m \bbH[X_i]$. -/ lemma entropy_of_W_le : H[W] ≤ (2*p.m - 1) * k + (m:ℝ)⁻¹ * ∑ i, H[X i] := sorry -/-- We let $\bbH[Z_2] \leq (8m^2-16m+1) k + \frac{1}{m} \sum_{i=1}^m \bbH[X_i]$. -/ +/-- We have $\bbH[Z_2] \leq (8m^2-16m+1) k + \frac{1}{m} \sum_{i=1}^m \bbH[X_i]$. -/ lemma entropy_of_Z_two_le : H[Z2] ≤ (8 * p.m^2 - 16 * p.m + 1) * k + (m:ℝ)⁻¹ * ∑ i, H[X i] := sorry -/-- We let $\bbI[W : Z_2] \leq 2 (m-1) k$. -/ +/-- We have $\bbI[W : Z_2] \leq 2 (m-1) k$. -/ lemma mutual_of_W_Z_two_le : I[W : Z2] ≤ 2 * (p.m-1) * k := sorry -/-- We let $\sum_{i=1}^m d[X_i;Z_2|W] \leq 8(m^3-m^2) k$. -/ +/-- We have $\sum_{i=1}^m d[X_i;Z_2|W] \leq 8(m^3-m^2) k$. -/ lemma sum_of_conditional_distance_le : ∑ i, d[ X i # Z2 | W] ≤ 8 * (p.m^3 - p.m^2)*k := sorry @@ -79,7 +79,7 @@ $$ -/ lemma dist_of_U_add_le {G: Type*} [MeasureableFinGroup G] {Ω: Type*} [MeasureSpace Ω] (T₁ T₂ T₃ : Ω → G) (hsum: T₁ + T₂ + T₃ = 0) (n:ℕ) {Ω': Fin n → Type*} (hΩ': ∀ i, MeasureSpace (Ω' i)) (Y: ∀ i, (Ω' i) → G) {α:ℝ} (hα: α > 0): ∃ (Ω'':Type*) (hΩ'': MeasureSpace Ω'') (U: Ω'' → G), d[U # U] + α * ∑ i, d[Y i # U] ≤ (2 + α * n / 2) * (I[T₁ : T₂] + I[T₁ : T₃] + I[T₂ : T₃]) + α * ∑ i, d[Y i # T₂] := sorry -/-- We let $k = 0$. -/ +/-- We have $k = 0$. -/ lemma k_eq_zero : k = 0 := sorry end AnalyzeMinimizer diff --git a/blueprint/src/chapter/torsion.tex b/blueprint/src/chapter/torsion.tex index df9cb5ec..3f06ac4e 100644 --- a/blueprint/src/chapter/torsion.tex +++ b/blueprint/src/chapter/torsion.tex @@ -850,7 +850,7 @@ \section{Wrapping up} \begin{theorem}[Entropy form of PFR]\label{main-entropy}\lean{dist_of_X_U_H_le}\leanok Suppose that $G$ is a finite abelian group of torsion $m$. Suppose that $X$ is a $G$-valued random variable. Then there exists a subgroup $H \leq G$ such that \[ d[X;U_H] \leq 64 m^3 d[X;X].\] \end{theorem} -\begin{proof}\uses{k-vanish, ruzsa-triangle, tau-def, multi-zero, eta-def-multi} Set $X^0 := X$. By \Cref{tau-min-exist-multi}, there exists a $\tau$-minimizer $X_{[m]} = (X_i)_{1 \leq i \leq m}$. By \Cref{k-vanish}, we have $D[X_{[m]}]=0$. By \Cref{tau-ref} and the pigeonhole principle, there exists $1 \leq i \leq m$ such that $d[X_i; X] \leq \frac{2}{\eta} d[X;X]$. By \Cref{multi-zero}, we have $d[X_i;U_H]=0$ for some subgroup $H \leq G$, hence by \Cref{ruzsa-triangle} we have $d[U_H; X] \leq \frac{2}{\eta} d[X;X]$. The claim then follows from \Cref{eta-def-multi}. +\begin{proof}\uses{k-vanish, ruzsa-triangle, tau-def, multi-zero, eta-def-multi, tau-ref} Set $X^0 := X$. By \Cref{tau-min-exist-multi}, there exists a $\tau$-minimizer $X_{[m]} = (X_i)_{1 \leq i \leq m}$. By \Cref{k-vanish}, we have $D[X_{[m]}]=0$. By \Cref{tau-ref} and the pigeonhole principle, there exists $1 \leq i \leq m$ such that $d[X_i; X] \leq \frac{2}{\eta} d[X;X]$. By \Cref{multi-zero}, we have $d[X_i;U_H]=0$ for some subgroup $H \leq G$, hence by \Cref{ruzsa-triangle} we have $d[U_H; X] \leq \frac{2}{\eta} d[X;X]$. The claim then follows from \Cref{eta-def-multi}. \end{proof} \begin{lemma}\label{pfr_aux_torsion}\lean{torsion_PFR_conjecture_aux}\leanok Suppose that $G$ is a finite abelian group of torsion $m$. If $A \subset G$ is non-empty and