-
Notifications
You must be signed in to change notification settings - Fork 9.7k
/
Copy pathtesseractclass.h
1031 lines (981 loc) · 47.6 KB
/
tesseractclass.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
///////////////////////////////////////////////////////////////////////
// File: tesseractclass.h
// Description: The Tesseract class. It holds/owns everything needed
// to run Tesseract on a single language, and also a set of
// sub-Tesseracts to run sub-languages. For thread safety, *every*
// global variable goes in here, directly, or indirectly.
// This makes it safe to run multiple Tesseracts in different
// threads in parallel, and keeps the different language
// instances separate.
// Author: Ray Smith
//
// (C) Copyright 2008, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_CCMAIN_TESSERACTCLASS_H_
#define TESSERACT_CCMAIN_TESSERACTCLASS_H_
#ifdef HAVE_CONFIG_H
# include "config_auto.h" // DISABLED_LEGACY_ENGINE
#endif
#include "control.h" // for ACCEPTABLE_WERD_TYPE
#include "debugpixa.h" // for DebugPixa
#include "devanagari_processing.h" // for ShiroRekhaSplitter
#ifndef DISABLED_LEGACY_ENGINE
# include "docqual.h" // for GARBAGE_LEVEL
#endif
#include "genericvector.h" // for PointerVector
#include "pageres.h" // for WERD_RES (ptr only), PAGE_RES (pt...
#include "params.h" // for BOOL_VAR_H, BoolParam, DoubleParam
#include "points.h" // for FCOORD
#include "ratngs.h" // for ScriptPos, WERD_CHOICE (ptr only)
#include "tessdatamanager.h" // for TessdataManager
#include "textord.h" // for Textord
#include "wordrec.h" // for Wordrec
#include <tesseract/publictypes.h> // for OcrEngineMode, PageSegMode, OEM_L...
#include <tesseract/unichar.h> // for UNICHAR_ID
#include <allheaders.h> // for pixDestroy, pixGetWidth, pixGetHe...
#include <cstdint> // for int16_t, int32_t, uint16_t
#include <cstdio> // for FILE
namespace tesseract {
class BLOCK_LIST;
class ETEXT_DESC;
struct OSResults;
class PAGE_RES;
class PAGE_RES_IT;
class ROW;
class SVMenuNode;
class TBOX;
class TO_BLOCK_LIST;
class WERD;
class WERD_CHOICE;
class WERD_RES;
class ColumnFinder;
class DocumentData;
#ifndef DISABLED_LEGACY_ENGINE
class EquationDetect;
#endif // ndef DISABLED_LEGACY_ENGINE
class ImageData;
class LSTMRecognizer;
class Tesseract;
// Top-level class for all tesseract global instance data.
// This class either holds or points to all data used by an instance
// of Tesseract, including the memory allocator. When this is
// complete, Tesseract will be thread-safe. UNTIL THEN, IT IS NOT!
//
// NOTE to developers: Do not create cyclic dependencies through this class!
// The directory dependency tree must remain a tree! To keep this clean,
// lower-level code (eg in ccutil, the bottom level) must never need to
// know about the content of a higher-level directory.
// The following scheme will grant the easiest access to lower-level
// global members without creating a cyclic dependency:
//
// Class Hierarchy (^ = inheritance):
//
// CCUtil (ccutil/ccutil.h)
// ^ Members include: UNICHARSET
// CCStruct (ccstruct/ccstruct.h)
// ^ Members include: Image
// Classify (classify/classify.h)
// ^ Members include: Dict
// WordRec (wordrec/wordrec.h)
// ^ Members include: WERD*, DENORM*
// Tesseract (ccmain/tesseractclass.h)
// Members include: Pix*
//
// Other important classes:
//
// TessBaseAPI (tesseract/baseapi.h)
// Members include: BLOCK_LIST*, PAGE_RES*,
// Tesseract*, ImageThresholder*
// Dict (dict/dict.h)
// Members include: Image* (private)
//
// NOTE: that each level contains members that correspond to global
// data that is defined (and used) at that level, not necessarily where
// the type is defined so for instance:
// BOOL_VAR_H(textord_show_blobs);
// goes inside the Textord class, not the cc_util class.
// A collection of various variables for statistics and debugging.
struct TesseractStats {
TesseractStats()
: adaption_word_number(0)
, doc_blob_quality(0)
, doc_outline_errs(0)
, doc_char_quality(0)
, good_char_count(0)
, doc_good_char_quality(0)
, word_count(0)
, dict_words(0)
, tilde_crunch_written(false)
, last_char_was_newline(true)
, last_char_was_tilde(false)
, write_results_empty_block(true) {}
int32_t adaption_word_number;
int16_t doc_blob_quality;
int16_t doc_outline_errs;
int16_t doc_char_quality;
int16_t good_char_count;
int16_t doc_good_char_quality;
int32_t word_count; // count of word in the document
int32_t dict_words; // number of dicitionary words in the document
std::string dump_words_str; // accumulator used by dump_words()
// Flags used by write_results()
bool tilde_crunch_written;
bool last_char_was_newline;
bool last_char_was_tilde;
bool write_results_empty_block;
};
// Struct to hold all the pointers to relevant data for processing a word.
struct WordData {
WordData() : word(nullptr), row(nullptr), block(nullptr), prev_word(nullptr) {}
explicit WordData(const PAGE_RES_IT &page_res_it)
: word(page_res_it.word())
, row(page_res_it.row()->row)
, block(page_res_it.block()->block)
, prev_word(nullptr) {}
WordData(BLOCK *block_in, ROW *row_in, WERD_RES *word_res)
: word(word_res), row(row_in), block(block_in), prev_word(nullptr) {}
WERD_RES *word;
ROW *row;
BLOCK *block;
WordData *prev_word;
PointerVector<WERD_RES> lang_words;
};
// Definition of a Tesseract WordRecognizer. The WordData provides the context
// of row/block, in_word holds an initialized, possibly pre-classified word,
// that the recognizer may or may not consume (but if so it sets
// *in_word=nullptr) and produces one or more output words in out_words, which
// may be the consumed in_word, or may be generated independently. This api
// allows both a conventional tesseract classifier to work, or a line-level
// classifier that generates multiple words from a merged input.
using WordRecognizer = void (Tesseract::*)(const WordData &, WERD_RES **,
PointerVector<WERD_RES> *);
class TESS_API Tesseract : public Wordrec {
public:
Tesseract();
~Tesseract() override;
// Return appropriate dictionary
Dict &getDict() override;
// Clear as much used memory as possible without resetting the adaptive
// classifier or losing any other classifier data.
void Clear();
// Clear all memory of adaption for this and all subclassifiers.
void ResetAdaptiveClassifier();
// Clear the document dictionary for this and all subclassifiers.
void ResetDocumentDictionary();
#ifndef DISABLED_LEGACY_ENGINE
// Set the equation detector.
void SetEquationDetect(EquationDetect *detector);
#endif // ndef DISABLED_LEGACY_ENGINE
// Simple accessors.
const FCOORD &reskew() const {
return reskew_;
}
float gradient() const {
return gradient_;
}
// Destroy any existing pix and return a pointer to the pointer.
Image *mutable_pix_binary() {
pix_binary_.destroy();
return &pix_binary_;
}
Image pix_binary() const {
return pix_binary_;
}
Image pix_grey() const {
return pix_grey_;
}
void set_pix_grey(Image grey_pix) {
pix_grey_.destroy();
pix_grey_ = grey_pix;
}
Image pix_original() const {
return pix_original_;
}
// Takes ownership of the given original_pix.
void set_pix_original(Image original_pix) {
pix_original_.destroy();
pix_original_ = original_pix;
// Clone to sublangs as well.
for (auto &lang : sub_langs_) {
lang->set_pix_original(original_pix ? original_pix.clone() : nullptr);
}
}
// Returns a pointer to a Pix representing the best available resolution image
// of the page, with best available bit depth as second priority. Result can
// be of any bit depth, but never color-mapped, as that has always been
// removed. Note that in grey and color, 0 is black and 255 is
// white. If the input was binary, then black is 1 and white is 0.
// To tell the difference pixGetDepth() will return 32, 8 or 1.
// In any case, the return value is a borrowed Pix, and should not be
// deleted or pixDestroyed.
Image BestPix() const {
if (pixGetWidth(pix_original_) == ImageWidth()) {
return pix_original_;
} else if (pix_grey_ != nullptr) {
return pix_grey_;
} else {
return pix_binary_;
}
}
void set_pix_thresholds(Image thresholds) {
pix_thresholds_.destroy();
pix_thresholds_ = thresholds;
}
int source_resolution() const {
return source_resolution_;
}
void set_source_resolution(int ppi) {
source_resolution_ = ppi;
}
int ImageWidth() const {
return pixGetWidth(pix_binary_);
}
int ImageHeight() const {
return pixGetHeight(pix_binary_);
}
Image scaled_color() const {
return scaled_color_;
}
int scaled_factor() const {
return scaled_factor_;
}
void SetScaledColor(int factor, Image color) {
scaled_factor_ = factor;
scaled_color_ = color;
}
const Textord &textord() const {
return textord_;
}
Textord *mutable_textord() {
return &textord_;
}
bool right_to_left() const {
return right_to_left_;
}
int num_sub_langs() const {
return sub_langs_.size();
}
Tesseract *get_sub_lang(int index) const {
return sub_langs_[index];
}
// Returns true if any language uses Tesseract (as opposed to LSTM).
bool AnyTessLang() const {
if (tessedit_ocr_engine_mode != OEM_LSTM_ONLY) {
return true;
}
for (auto &lang : sub_langs_) {
if (lang->tessedit_ocr_engine_mode != OEM_LSTM_ONLY) {
return true;
}
}
return false;
}
// Returns true if any language uses the LSTM.
bool AnyLSTMLang() const {
if (tessedit_ocr_engine_mode != OEM_TESSERACT_ONLY) {
return true;
}
for (auto &lang : sub_langs_) {
if (lang->tessedit_ocr_engine_mode != OEM_TESSERACT_ONLY) {
return true;
}
}
return false;
}
void SetBlackAndWhitelist();
// Perform steps to prepare underlying binary image/other data structures for
// page segmentation. Uses the strategy specified in the global variable
// pageseg_devanagari_split_strategy for perform splitting while preparing for
// page segmentation.
void PrepareForPageseg();
// Perform steps to prepare underlying binary image/other data structures for
// Tesseract OCR. The current segmentation is required by this method.
// Uses the strategy specified in the global variable
// ocr_devanagari_split_strategy for performing splitting while preparing for
// Tesseract ocr.
void PrepareForTessOCR(BLOCK_LIST *block_list, Tesseract *osd_tess, OSResults *osr);
int SegmentPage(const char *input_file, BLOCK_LIST *blocks, Tesseract *osd_tess, OSResults *osr);
void SetupWordScripts(BLOCK_LIST *blocks);
int AutoPageSeg(PageSegMode pageseg_mode, BLOCK_LIST *blocks, TO_BLOCK_LIST *to_blocks,
BLOBNBOX_LIST *diacritic_blobs, Tesseract *osd_tess, OSResults *osr);
ColumnFinder *SetupPageSegAndDetectOrientation(PageSegMode pageseg_mode, BLOCK_LIST *blocks,
Tesseract *osd_tess, OSResults *osr,
TO_BLOCK_LIST *to_blocks, Image *photo_mask_pix,
Image *music_mask_pix);
// par_control.cpp
void PrerecAllWordsPar(const std::vector<WordData> &words);
//// linerec.cpp
// Generates training data for training a line recognizer, eg LSTM.
// Breaks the page into lines, according to the boxes, and writes them to a
// serialized DocumentData based on output_basename.
// Return true if successful, false if an error occurred.
bool TrainLineRecognizer(const char *input_imagename, const std::string &output_basename,
BLOCK_LIST *block_list);
// Generates training data for training a line recognizer, eg LSTM.
// Breaks the boxes into lines, normalizes them, converts to ImageData and
// appends them to the given training_data.
void TrainFromBoxes(const std::vector<TBOX> &boxes, const std::vector<std::string> &texts,
BLOCK_LIST *block_list, DocumentData *training_data);
// Returns an Imagedata containing the image of the given textline,
// and ground truth boxes/truth text if available in the input.
// The image is not normalized in any way.
ImageData *GetLineData(const TBOX &line_box, const std::vector<TBOX> &boxes,
const std::vector<std::string> &texts, int start_box, int end_box,
const BLOCK &block);
// Helper gets the image of a rectangle, using the block.re_rotation() if
// needed to get to the image, and rotating the result back to horizontal
// layout. (CJK characters will be on their left sides) The vertical text flag
// is set in the returned ImageData if the text was originally vertical, which
// can be used to invoke a different CJK recognition engine. The revised_box
// is also returned to enable calculation of output bounding boxes.
ImageData *GetRectImage(const TBOX &box, const BLOCK &block, int padding,
TBOX *revised_box) const;
// Recognizes a word or group of words, converting to WERD_RES in *words.
// Analogous to classify_word_pass1, but can handle a group of words as well.
void LSTMRecognizeWord(const BLOCK &block, ROW *row, WERD_RES *word,
PointerVector<WERD_RES> *words);
// Apply segmentation search to the given set of words, within the constraints
// of the existing ratings matrix. If there is already a best_choice on a word
// leaves it untouched and just sets the done/accepted etc flags.
void SearchWords(PointerVector<WERD_RES> *words);
//// control.h /////////////////////////////////////////////////////////
bool ProcessTargetWord(const TBOX &word_box, const TBOX &target_word_box, const char *word_config,
int pass);
// Sets up the words ready for whichever engine is to be run
void SetupAllWordsPassN(int pass_n, const TBOX *target_word_box, const char *word_config,
PAGE_RES *page_res, std::vector<WordData> *words);
// Sets up the single word ready for whichever engine is to be run.
void SetupWordPassN(int pass_n, WordData *word);
// Runs word recognition on all the words.
bool RecogAllWordsPassN(int pass_n, ETEXT_DESC *monitor, PAGE_RES_IT *pr_it,
std::vector<WordData> *words);
bool recog_all_words(PAGE_RES *page_res, ETEXT_DESC *monitor, const TBOX *target_word_box,
const char *word_config, int dopasses);
void rejection_passes(PAGE_RES *page_res, ETEXT_DESC *monitor, const TBOX *target_word_box,
const char *word_config);
void bigram_correction_pass(PAGE_RES *page_res);
void blamer_pass(PAGE_RES *page_res);
// Sets script positions and detects smallcaps on all output words.
void script_pos_pass(PAGE_RES *page_res);
// Helper to recognize the word using the given (language-specific) tesseract.
// Returns positive if this recognizer found more new best words than the
// number kept from best_words.
int RetryWithLanguage(const WordData &word_data, WordRecognizer recognizer, bool debug,
WERD_RES **in_word, PointerVector<WERD_RES> *best_words);
// Moves good-looking "noise"/diacritics from the reject list to the main
// blob list on the current word. Returns true if anything was done, and
// sets make_next_word_fuzzy if blob(s) were added to the end of the word.
bool ReassignDiacritics(int pass, PAGE_RES_IT *pr_it, bool *make_next_word_fuzzy);
// Attempts to put noise/diacritic outlines into the blobs that they overlap.
// Input: a set of noisy outlines that probably belong to the real_word.
// Output: outlines that overlapped blobs are set to nullptr and put back into
// the word, either in the blobs or in the reject list.
void AssignDiacriticsToOverlappingBlobs(const std::vector<C_OUTLINE *> &outlines, int pass,
WERD *real_word, PAGE_RES_IT *pr_it,
std::vector<bool> *word_wanted,
std::vector<bool> *overlapped_any_blob,
std::vector<C_BLOB *> *target_blobs);
// Attempts to assign non-overlapping outlines to their nearest blobs or
// make new blobs out of them.
void AssignDiacriticsToNewBlobs(const std::vector<C_OUTLINE *> &outlines, int pass,
WERD *real_word, PAGE_RES_IT *pr_it,
std::vector<bool> *word_wanted,
std::vector<C_BLOB *> *target_blobs);
// Starting with ok_outlines set to indicate which outlines overlap the blob,
// chooses the optimal set (approximately) and returns true if any outlines
// are desired, in which case ok_outlines indicates which ones.
bool SelectGoodDiacriticOutlines(int pass, float certainty_threshold, PAGE_RES_IT *pr_it,
C_BLOB *blob, const std::vector<C_OUTLINE *> &outlines,
int num_outlines, std::vector<bool> *ok_outlines);
// Classifies the given blob plus the outlines flagged by ok_outlines, undoes
// the inclusion of the outlines, and returns the certainty of the raw choice.
float ClassifyBlobPlusOutlines(const std::vector<bool> &ok_outlines,
const std::vector<C_OUTLINE *> &outlines, int pass_n,
PAGE_RES_IT *pr_it, C_BLOB *blob, std::string &best_str);
// Classifies the given blob (part of word_data->word->word) as an individual
// word, using languages, chopper etc, returning only the certainty of the
// best raw choice, and undoing all the work done to fake out the word.
float ClassifyBlobAsWord(int pass_n, PAGE_RES_IT *pr_it, C_BLOB *blob, std::string &best_str,
float *c2);
void classify_word_and_language(int pass_n, PAGE_RES_IT *pr_it, WordData *word_data);
void classify_word_pass1(const WordData &word_data, WERD_RES **in_word,
PointerVector<WERD_RES> *out_words);
void recog_pseudo_word(PAGE_RES *page_res, // blocks to check
TBOX &selection_box);
void fix_rep_char(PAGE_RES_IT *page_res_it);
ACCEPTABLE_WERD_TYPE acceptable_word_string(const UNICHARSET &char_set, const char *s,
const char *lengths);
void match_word_pass_n(int pass_n, WERD_RES *word, ROW *row, BLOCK *block);
void classify_word_pass2(const WordData &word_data, WERD_RES **in_word,
PointerVector<WERD_RES> *out_words);
void ReportXhtFixResult(bool accept_new_word, float new_x_ht, WERD_RES *word, WERD_RES *new_word);
bool RunOldFixXht(WERD_RES *word, BLOCK *block, ROW *row);
bool TrainedXheightFix(WERD_RES *word, BLOCK *block, ROW *row);
// Runs recognition with the test baseline shift and x-height and returns true
// if there was an improvement in recognition result.
bool TestNewNormalization(int original_misfits, float baseline_shift, float new_x_ht,
WERD_RES *word, BLOCK *block, ROW *row);
bool recog_interactive(PAGE_RES_IT *pr_it);
// Set fonts of this word.
void set_word_fonts(WERD_RES *word);
void font_recognition_pass(PAGE_RES *page_res);
void dictionary_correction_pass(PAGE_RES *page_res);
bool check_debug_pt(WERD_RES *word, int location);
//// superscript.cpp ////////////////////////////////////////////////////
bool SubAndSuperscriptFix(WERD_RES *word_res);
void GetSubAndSuperscriptCandidates(const WERD_RES *word, int *num_rebuilt_leading,
ScriptPos *leading_pos, float *leading_certainty,
int *num_rebuilt_trailing, ScriptPos *trailing_pos,
float *trailing_certainty, float *avg_certainty,
float *unlikely_threshold);
WERD_RES *TrySuperscriptSplits(int num_chopped_leading, float leading_certainty,
ScriptPos leading_pos, int num_chopped_trailing,
float trailing_certainty, ScriptPos trailing_pos, WERD_RES *word,
bool *is_good, int *retry_leading, int *retry_trailing);
bool BelievableSuperscript(bool debug, const WERD_RES &word, float certainty_threshold,
int *left_ok, int *right_ok) const;
//// output.h //////////////////////////////////////////////////////////
void output_pass(PAGE_RES_IT &page_res_it, const TBOX *target_word_box);
void write_results(PAGE_RES_IT &page_res_it, // full info
char newline_type, // type of newline
bool force_eol // override tilde crunch?
);
void set_unlv_suspects(WERD_RES *word);
UNICHAR_ID get_rep_char(WERD_RES *word); // what char is repeated?
bool acceptable_number_string(const char *s, const char *lengths);
int16_t count_alphanums(const WERD_CHOICE &word);
int16_t count_alphas(const WERD_CHOICE &word);
void read_config_file(const char *filename, SetParamConstraint constraint);
// Initialize for potentially a set of languages defined by the language
// string and recursively any additional languages required by any language
// traineddata file (via tessedit_load_sublangs in its config) that is loaded.
// See init_tesseract_internal for args.
int init_tesseract(const std::string &arg0, const std::string &textbase,
const std::string &language, OcrEngineMode oem, char **configs,
int configs_size, const std::vector<std::string> *vars_vec,
const std::vector<std::string> *vars_values, bool set_only_non_debug_params,
TessdataManager *mgr);
int init_tesseract(const std::string &datapath, const std::string &language, OcrEngineMode oem) {
TessdataManager mgr;
return init_tesseract(datapath, {}, language, oem, nullptr, 0, nullptr, nullptr, false, &mgr);
}
// Common initialization for a single language.
// arg0 is the datapath for the tessdata directory, which could be the
// path of the tessdata directory with no trailing /, or (if tessdata
// lives in the same directory as the executable, the path of the executable,
// hence the name arg0.
// textbase is an optional output file basename (used only for training)
// language is the language code to load.
// oem controls which engine(s) will operate on the image
// configs (argv) is an array of config filenames to load variables from.
// May be nullptr.
// configs_size (argc) is the number of elements in configs.
// vars_vec is an optional vector of variables to set.
// vars_values is an optional corresponding vector of values for the variables
// in vars_vec.
// If set_only_non_debug_params is true, only params that do not contain
// "debug" in the name will be set.
int init_tesseract_internal(const std::string &arg0, const std::string &textbase,
const std::string &language, OcrEngineMode oem, char **configs,
int configs_size, const std::vector<std::string> *vars_vec,
const std::vector<std::string> *vars_values,
bool set_only_non_debug_params, TessdataManager *mgr);
// Set the universal_id member of each font to be unique among all
// instances of the same font loaded.
void SetupUniversalFontIds();
void recognize_page(std::string &image_name);
void end_tesseract();
bool init_tesseract_lang_data(const std::string &arg0,
const std::string &language, OcrEngineMode oem, char **configs,
int configs_size, const std::vector<std::string> *vars_vec,
const std::vector<std::string> *vars_values,
bool set_only_non_debug_params, TessdataManager *mgr);
void ParseLanguageString(const std::string &lang_str, std::vector<std::string> *to_load,
std::vector<std::string> *not_to_load);
//// pgedit.h //////////////////////////////////////////////////////////
SVMenuNode *build_menu_new();
#ifndef GRAPHICS_DISABLED
void pgeditor_main(int width, int height, PAGE_RES *page_res);
void process_image_event( // action in image win
const SVEvent &event);
bool process_cmd_win_event( // UI command semantics
int32_t cmd_event, // which menu item?
char *new_value // any prompt data
);
#endif // !GRAPHICS_DISABLED
void debug_word(PAGE_RES *page_res, const TBOX &selection_box);
void do_re_display(bool (tesseract::Tesseract::*word_painter)(PAGE_RES_IT *pr_it));
bool word_display(PAGE_RES_IT *pr_it);
bool word_bln_display(PAGE_RES_IT *pr_it);
bool word_blank_and_set_display(PAGE_RES_IT *pr_its);
bool word_set_display(PAGE_RES_IT *pr_it);
// #ifndef GRAPHICS_DISABLED
bool word_dumper(PAGE_RES_IT *pr_it);
// #endif // !GRAPHICS_DISABLED
void blob_feature_display(PAGE_RES *page_res, const TBOX &selection_box);
//// reject.h //////////////////////////////////////////////////////////
// make rej map for word
void make_reject_map(WERD_RES *word, ROW *row, int16_t pass);
bool one_ell_conflict(WERD_RES *word_res, bool update_map);
int16_t first_alphanum_index(const char *word, const char *word_lengths);
int16_t first_alphanum_offset(const char *word, const char *word_lengths);
int16_t alpha_count(const char *word, const char *word_lengths);
bool word_contains_non_1_digit(const char *word, const char *word_lengths);
void dont_allow_1Il(WERD_RES *word);
int16_t count_alphanums( // how many alphanums
WERD_RES *word);
void flip_0O(WERD_RES *word);
bool non_0_digit(const UNICHARSET &ch_set, UNICHAR_ID unichar_id);
bool non_O_upper(const UNICHARSET &ch_set, UNICHAR_ID unichar_id);
bool repeated_nonalphanum_wd(WERD_RES *word, ROW *row);
void nn_match_word( // Match a word
WERD_RES *word, ROW *row);
void nn_recover_rejects(WERD_RES *word, ROW *row);
void set_done( // set done flag
WERD_RES *word, int16_t pass);
int16_t safe_dict_word(const WERD_RES *werd_res); // is best_choice in dict?
void flip_hyphens(WERD_RES *word);
void reject_I_1_L(WERD_RES *word);
void reject_edge_blobs(WERD_RES *word);
void reject_mostly_rejects(WERD_RES *word);
//// adaptions.h ///////////////////////////////////////////////////////
bool word_adaptable( // should we adapt?
WERD_RES *word, uint16_t mode);
//// tfacepp.cpp ///////////////////////////////////////////////////////
void recog_word_recursive(WERD_RES *word);
void recog_word(WERD_RES *word);
void split_and_recog_word(WERD_RES *word);
void split_word(WERD_RES *word, unsigned split_pt, WERD_RES **right_piece,
BlamerBundle **orig_blamer_bundle) const;
void join_words(WERD_RES *word, WERD_RES *word2, BlamerBundle *orig_bb) const;
//// fixspace.cpp ///////////////////////////////////////////////////////
bool digit_or_numeric_punct(WERD_RES *word, int char_position);
int16_t eval_word_spacing(WERD_RES_LIST &word_res_list);
void match_current_words(WERD_RES_LIST &words, ROW *row, BLOCK *block);
int16_t fp_eval_word_spacing(WERD_RES_LIST &word_res_list);
void fix_noisy_space_list(WERD_RES_LIST &best_perm, ROW *row, BLOCK *block);
void fix_fuzzy_space_list(WERD_RES_LIST &best_perm, ROW *row, BLOCK *block);
void fix_sp_fp_word(WERD_RES_IT &word_res_it, ROW *row, BLOCK *block);
void fix_fuzzy_spaces( // find fuzzy words
ETEXT_DESC *monitor, // progress monitor
int32_t word_count, // count of words in doc
PAGE_RES *page_res);
void dump_words(WERD_RES_LIST &perm, int16_t score, int16_t mode, bool improved);
bool fixspace_thinks_word_done(WERD_RES *word);
int16_t worst_noise_blob(WERD_RES *word_res, float *worst_noise_score);
float blob_noise_score(TBLOB *blob);
void break_noisiest_blob_word(WERD_RES_LIST &words);
//// docqual.cpp ////////////////////////////////////////////////////////
#ifndef DISABLED_LEGACY_ENGINE
GARBAGE_LEVEL garbage_word(WERD_RES *word, bool ok_dict_word);
bool potential_word_crunch(WERD_RES *word, GARBAGE_LEVEL garbage_level, bool ok_dict_word);
#endif
void tilde_crunch(PAGE_RES_IT &page_res_it);
void unrej_good_quality_words( // unreject potential
PAGE_RES_IT &page_res_it);
void doc_and_block_rejection( // reject big chunks
PAGE_RES_IT &page_res_it, bool good_quality_doc);
void quality_based_rejection(PAGE_RES_IT &page_res_it, bool good_quality_doc);
void convert_bad_unlv_chs(WERD_RES *word_res);
void tilde_delete(PAGE_RES_IT &page_res_it);
int16_t word_blob_quality(WERD_RES *word);
void word_char_quality(WERD_RES *word, int16_t *match_count, int16_t *accepted_match_count);
void unrej_good_chs(WERD_RES *word);
int16_t count_outline_errs(char c, int16_t outline_count);
int16_t word_outline_errs(WERD_RES *word);
#ifndef DISABLED_LEGACY_ENGINE
bool terrible_word_crunch(WERD_RES *word, GARBAGE_LEVEL garbage_level);
#endif
CRUNCH_MODE word_deletable(WERD_RES *word, int16_t &delete_mode);
int16_t failure_count(WERD_RES *word);
bool noise_outlines(TWERD *word);
//// pagewalk.cpp ///////////////////////////////////////////////////////
void process_selected_words(PAGE_RES *page_res, // blocks to check
// function to call
TBOX &selection_box,
bool (tesseract::Tesseract::*word_processor)(PAGE_RES_IT *pr_it));
//// tessbox.cpp ///////////////////////////////////////////////////////
void tess_add_doc_word( // test acceptability
WERD_CHOICE *word_choice // after context
);
void tess_segment_pass_n(int pass_n, WERD_RES *word);
bool tess_acceptable_word(WERD_RES *word);
//// applybox.cpp //////////////////////////////////////////////////////
// Applies the box file based on the image name filename, and resegments
// the words in the block_list (page), with:
// blob-mode: one blob per line in the box file, words as input.
// word/line-mode: one blob per space-delimited unit after the #, and one word
// per line in the box file. (See comment above for box file format.)
// If find_segmentation is true, (word/line mode) then the classifier is used
// to re-segment words/lines to match the space-delimited truth string for
// each box. In this case, the input box may be for a word or even a whole
// text line, and the output words will contain multiple blobs corresponding
// to the space-delimited input string.
// With find_segmentation false, no classifier is needed, but the chopper
// can still be used to correctly segment touching characters with the help
// of the input boxes.
// In the returned PAGE_RES, the WERD_RES are setup as they would be returned
// from normal classification, ie. with a word, chopped_word, rebuild_word,
// seam_array, denorm, box_word, and best_state, but NO best_choice or
// raw_choice, as they would require a UNICHARSET, which we aim to avoid.
// Instead, the correct_text member of WERD_RES is set, and this may be later
// converted to a best_choice using CorrectClassifyWords. CorrectClassifyWords
// is not required before calling ApplyBoxTraining.
PAGE_RES *ApplyBoxes(const char *filename, bool find_segmentation, BLOCK_LIST *block_list);
// Any row xheight that is significantly different from the median is set
// to the median.
void PreenXHeights(BLOCK_LIST *block_list);
// Builds a PAGE_RES from the block_list in the way required for ApplyBoxes:
// All fuzzy spaces are removed, and all the words are maximally chopped.
PAGE_RES *SetupApplyBoxes(const std::vector<TBOX> &boxes, BLOCK_LIST *block_list);
// Tests the chopper by exhaustively running chop_one_blob.
// The word_res will contain filled chopped_word, seam_array, denorm,
// box_word and best_state for the maximally chopped word.
void MaximallyChopWord(const std::vector<TBOX> &boxes, BLOCK *block, ROW *row,
WERD_RES *word_res);
// Gather consecutive blobs that match the given box into the best_state
// and corresponding correct_text.
// Fights over which box owns which blobs are settled by pre-chopping and
// applying the blobs to box or next_box with the least non-overlap.
// Returns false if the box was in error, which can only be caused by
// failing to find an appropriate blob for a box.
// This means that occasionally, blobs may be incorrectly segmented if the
// chopper fails to find a suitable chop point.
bool ResegmentCharBox(PAGE_RES *page_res, const TBOX *prev_box, const TBOX &box,
const TBOX *next_box, const char *correct_text);
// Consume all source blobs that strongly overlap the given box,
// putting them into a new word, with the correct_text label.
// Fights over which box owns which blobs are settled by
// applying the blobs to box or next_box with the least non-overlap.
// Returns false if the box was in error, which can only be caused by
// failing to find an overlapping blob for a box.
bool ResegmentWordBox(BLOCK_LIST *block_list, const TBOX &box, const TBOX *next_box,
const char *correct_text);
// Resegments the words by running the classifier in an attempt to find the
// correct segmentation that produces the required string.
void ReSegmentByClassification(PAGE_RES *page_res);
// Converts the space-delimited string of utf8 text to a vector of UNICHAR_ID.
// Returns false if an invalid UNICHAR_ID is encountered.
bool ConvertStringToUnichars(const char *utf8, std::vector<UNICHAR_ID> *class_ids);
// Resegments the word to achieve the target_text from the classifier.
// Returns false if the re-segmentation fails.
// Uses brute-force combination of up to kMaxGroupSize adjacent blobs, and
// applies a full search on the classifier results to find the best classified
// segmentation. As a compromise to obtain better recall, 1-1 ambigiguity
// substitutions ARE used.
bool FindSegmentation(const std::vector<UNICHAR_ID> &target_text, WERD_RES *word_res);
// Recursive helper to find a match to the target_text (from text_index
// position) in the choices (from choices_pos position).
// Choices is an array of vectors of length choices_length, with each
// element representing a starting position in the word, and the
// vector holding classification results for a sequence of consecutive
// blobs, with index 0 being a single blob, index 1 being 2 blobs etc.
void SearchForText(const std::vector<BLOB_CHOICE_LIST *> *choices, int choices_pos,
unsigned choices_length, const std::vector<UNICHAR_ID> &target_text,
unsigned text_index, float rating, std::vector<int> *segmentation,
float *best_rating, std::vector<int> *best_segmentation);
// Counts up the labelled words and the blobs within.
// Deletes all unused or emptied words, counting the unused ones.
// Resets W_BOL and W_EOL flags correctly.
// Builds the rebuild_word and rebuilds the box_word.
void TidyUp(PAGE_RES *page_res);
// Logs a bad box by line in the box file and box coords.
void ReportFailedBox(int boxfile_lineno, TBOX box, const char *box_ch, const char *err_msg);
// Creates a fake best_choice entry in each WERD_RES with the correct text.
void CorrectClassifyWords(PAGE_RES *page_res);
// Call LearnWord to extract features for labelled blobs within each word.
// Features are stored in an internal buffer.
void ApplyBoxTraining(const std::string &fontname, PAGE_RES *page_res);
//// fixxht.cpp ///////////////////////////////////////////////////////
// Returns the number of misfit blob tops in this word.
int CountMisfitTops(WERD_RES *word_res);
// Returns a new x-height in pixels (original image coords) that is
// maximally compatible with the result in word_res.
// Returns 0.0f if no x-height is found that is better than the current
// estimate.
float ComputeCompatibleXheight(WERD_RES *word_res, float *baseline_shift);
//// Data members ///////////////////////////////////////////////////////
// TODO(ocr-team): Find and remove obsolete parameters.
BOOL_VAR_H(tessedit_resegment_from_boxes);
BOOL_VAR_H(tessedit_resegment_from_line_boxes);
BOOL_VAR_H(tessedit_train_from_boxes);
BOOL_VAR_H(tessedit_make_boxes_from_boxes);
BOOL_VAR_H(tessedit_train_line_recognizer);
BOOL_VAR_H(tessedit_dump_pageseg_images);
// TODO: remove deprecated tessedit_do_invert in release 6.
BOOL_VAR_H(tessedit_do_invert);
double_VAR_H(invert_threshold);
INT_VAR_H(tessedit_pageseg_mode);
INT_VAR_H(thresholding_method);
BOOL_VAR_H(thresholding_debug);
double_VAR_H(thresholding_window_size);
double_VAR_H(thresholding_kfactor);
double_VAR_H(thresholding_tile_size);
double_VAR_H(thresholding_smooth_kernel_size);
double_VAR_H(thresholding_score_fraction);
INT_VAR_H(tessedit_ocr_engine_mode);
STRING_VAR_H(tessedit_char_blacklist);
STRING_VAR_H(tessedit_char_whitelist);
STRING_VAR_H(tessedit_char_unblacklist);
BOOL_VAR_H(tessedit_ambigs_training);
INT_VAR_H(pageseg_devanagari_split_strategy);
INT_VAR_H(ocr_devanagari_split_strategy);
STRING_VAR_H(tessedit_write_params_to_file);
BOOL_VAR_H(tessedit_adaption_debug);
INT_VAR_H(bidi_debug);
INT_VAR_H(applybox_debug);
INT_VAR_H(applybox_page);
STRING_VAR_H(applybox_exposure_pattern);
BOOL_VAR_H(applybox_learn_chars_and_char_frags_mode);
BOOL_VAR_H(applybox_learn_ngrams_mode);
BOOL_VAR_H(tessedit_display_outwords);
BOOL_VAR_H(tessedit_dump_choices);
BOOL_VAR_H(tessedit_timing_debug);
BOOL_VAR_H(tessedit_fix_fuzzy_spaces);
BOOL_VAR_H(tessedit_unrej_any_wd);
BOOL_VAR_H(tessedit_fix_hyphens);
BOOL_VAR_H(tessedit_enable_doc_dict);
BOOL_VAR_H(tessedit_debug_fonts);
INT_VAR_H(tessedit_font_id);
BOOL_VAR_H(tessedit_debug_block_rejection);
BOOL_VAR_H(tessedit_enable_bigram_correction);
BOOL_VAR_H(tessedit_enable_dict_correction);
INT_VAR_H(tessedit_bigram_debug);
BOOL_VAR_H(enable_noise_removal);
INT_VAR_H(debug_noise_removal);
// Worst (min) certainty, for which a diacritic is allowed to make the base
// character worse and still be included.
double_VAR_H(noise_cert_basechar);
// Worst (min) certainty, for which a non-overlapping diacritic is allowed to
// make the base character worse and still be included.
double_VAR_H(noise_cert_disjoint);
// Worst (min) certainty, for which a diacritic is allowed to make a new
// stand-alone blob.
double_VAR_H(noise_cert_punc);
// Factor of certainty margin for adding diacritics to not count as worse.
double_VAR_H(noise_cert_factor);
INT_VAR_H(noise_maxperblob);
INT_VAR_H(noise_maxperword);
INT_VAR_H(debug_x_ht_level);
STRING_VAR_H(chs_leading_punct);
STRING_VAR_H(chs_trailing_punct1);
STRING_VAR_H(chs_trailing_punct2);
double_VAR_H(quality_rej_pc);
double_VAR_H(quality_blob_pc);
double_VAR_H(quality_outline_pc);
double_VAR_H(quality_char_pc);
INT_VAR_H(quality_min_initial_alphas_reqd);
INT_VAR_H(tessedit_tess_adaption_mode);
BOOL_VAR_H(tessedit_minimal_rej_pass1);
BOOL_VAR_H(tessedit_test_adaption);
BOOL_VAR_H(test_pt);
double_VAR_H(test_pt_x);
double_VAR_H(test_pt_y);
INT_VAR_H(multilang_debug_level);
INT_VAR_H(paragraph_debug_level);
BOOL_VAR_H(paragraph_text_based);
BOOL_VAR_H(lstm_use_matrix);
STRING_VAR_H(outlines_odd);
STRING_VAR_H(outlines_2);
BOOL_VAR_H(tessedit_good_quality_unrej);
BOOL_VAR_H(tessedit_use_reject_spaces);
double_VAR_H(tessedit_reject_doc_percent);
double_VAR_H(tessedit_reject_block_percent);
double_VAR_H(tessedit_reject_row_percent);
double_VAR_H(tessedit_whole_wd_rej_row_percent);
BOOL_VAR_H(tessedit_preserve_blk_rej_perfect_wds);
BOOL_VAR_H(tessedit_preserve_row_rej_perfect_wds);
BOOL_VAR_H(tessedit_dont_blkrej_good_wds);
BOOL_VAR_H(tessedit_dont_rowrej_good_wds);
INT_VAR_H(tessedit_preserve_min_wd_len);
BOOL_VAR_H(tessedit_row_rej_good_docs);
double_VAR_H(tessedit_good_doc_still_rowrej_wd);
BOOL_VAR_H(tessedit_reject_bad_qual_wds);
BOOL_VAR_H(tessedit_debug_doc_rejection);
BOOL_VAR_H(tessedit_debug_quality_metrics);
BOOL_VAR_H(bland_unrej);
double_VAR_H(quality_rowrej_pc);
BOOL_VAR_H(unlv_tilde_crunching);
BOOL_VAR_H(hocr_font_info);
BOOL_VAR_H(hocr_char_boxes);
BOOL_VAR_H(crunch_early_merge_tess_fails);
BOOL_VAR_H(crunch_early_convert_bad_unlv_chs);
double_VAR_H(crunch_terrible_rating);
BOOL_VAR_H(crunch_terrible_garbage);
double_VAR_H(crunch_poor_garbage_cert);
double_VAR_H(crunch_poor_garbage_rate);
double_VAR_H(crunch_pot_poor_rate);
double_VAR_H(crunch_pot_poor_cert);
double_VAR_H(crunch_del_rating);
double_VAR_H(crunch_del_cert);
double_VAR_H(crunch_del_min_ht);
double_VAR_H(crunch_del_max_ht);
double_VAR_H(crunch_del_min_width);
double_VAR_H(crunch_del_high_word);
double_VAR_H(crunch_del_low_word);
double_VAR_H(crunch_small_outlines_size);
INT_VAR_H(crunch_rating_max);
INT_VAR_H(crunch_pot_indicators);
BOOL_VAR_H(crunch_leave_ok_strings);
BOOL_VAR_H(crunch_accept_ok);
BOOL_VAR_H(crunch_leave_accept_strings);
BOOL_VAR_H(crunch_include_numerals);
INT_VAR_H(crunch_leave_lc_strings);
INT_VAR_H(crunch_leave_uc_strings);
INT_VAR_H(crunch_long_repetitions);
INT_VAR_H(crunch_debug);
INT_VAR_H(fixsp_non_noise_limit);
double_VAR_H(fixsp_small_outlines_size);
BOOL_VAR_H(tessedit_prefer_joined_punct);
INT_VAR_H(fixsp_done_mode);
INT_VAR_H(debug_fix_space_level);
STRING_VAR_H(numeric_punctuation);
INT_VAR_H(x_ht_acceptance_tolerance);
INT_VAR_H(x_ht_min_change);
INT_VAR_H(superscript_debug);
double_VAR_H(superscript_worse_certainty);
double_VAR_H(superscript_bettered_certainty);
double_VAR_H(superscript_scaledown_ratio);
double_VAR_H(subscript_max_y_top);
double_VAR_H(superscript_min_y_bottom);
BOOL_VAR_H(tessedit_write_block_separators);
BOOL_VAR_H(tessedit_write_rep_codes);
BOOL_VAR_H(tessedit_write_unlv);
BOOL_VAR_H(tessedit_create_txt);
BOOL_VAR_H(tessedit_create_hocr);
BOOL_VAR_H(tessedit_create_alto);
BOOL_VAR_H(tessedit_create_page_xml);
BOOL_VAR_H(page_xml_polygon);
INT_VAR_H(page_xml_level);
BOOL_VAR_H(tessedit_create_lstmbox);
BOOL_VAR_H(tessedit_create_tsv);
BOOL_VAR_H(tessedit_create_wordstrbox);
BOOL_VAR_H(tessedit_create_pdf);
BOOL_VAR_H(textonly_pdf);
INT_VAR_H(jpg_quality);
INT_VAR_H(user_defined_dpi);
INT_VAR_H(min_characters_to_try);
STRING_VAR_H(unrecognised_char);
INT_VAR_H(suspect_level);
INT_VAR_H(suspect_short_words);
BOOL_VAR_H(suspect_constrain_1Il);
double_VAR_H(suspect_rating_per_ch);
double_VAR_H(suspect_accept_rating);
BOOL_VAR_H(tessedit_minimal_rejection);
BOOL_VAR_H(tessedit_zero_rejection);
BOOL_VAR_H(tessedit_word_for_word);
BOOL_VAR_H(tessedit_zero_kelvin_rejection);
INT_VAR_H(tessedit_reject_mode);
BOOL_VAR_H(tessedit_rejection_debug);
BOOL_VAR_H(tessedit_flip_0O);
double_VAR_H(tessedit_lower_flip_hyphen);
double_VAR_H(tessedit_upper_flip_hyphen);
BOOL_VAR_H(rej_trust_doc_dawg);
BOOL_VAR_H(rej_1Il_use_dict_word);
BOOL_VAR_H(rej_1Il_trust_permuter_type);
BOOL_VAR_H(rej_use_tess_accepted);
BOOL_VAR_H(rej_use_tess_blanks);
BOOL_VAR_H(rej_use_good_perm);
BOOL_VAR_H(rej_use_sensible_wd);
BOOL_VAR_H(rej_alphas_in_number_perm);
double_VAR_H(rej_whole_of_mostly_reject_word_fract);
INT_VAR_H(tessedit_image_border);
STRING_VAR_H(ok_repeated_ch_non_alphanum_wds);
STRING_VAR_H(conflict_set_I_l_1);
INT_VAR_H(min_sane_x_ht_pixels);
BOOL_VAR_H(tessedit_create_boxfile);
INT_VAR_H(tessedit_page_number);
BOOL_VAR_H(tessedit_write_images);
BOOL_VAR_H(interactive_display_mode);
STRING_VAR_H(file_type);
BOOL_VAR_H(tessedit_override_permuter);
STRING_VAR_H(tessedit_load_sublangs);
BOOL_VAR_H(tessedit_use_primary_params_model);
// Min acceptable orientation margin (difference in scores between top and 2nd
// choice in OSResults::orientations) to believe the page orientation.
double_VAR_H(min_orientation_margin);
BOOL_VAR_H(textord_tabfind_show_vlines);
BOOL_VAR_H(textord_use_cjk_fp_model);
BOOL_VAR_H(poly_allow_detailed_fx);
BOOL_VAR_H(tessedit_init_config_only);
#ifndef DISABLED_LEGACY_ENGINE
BOOL_VAR_H(textord_equation_detect);
#endif // ndef DISABLED_LEGACY_ENGINE
BOOL_VAR_H(textord_tabfind_vertical_text);
BOOL_VAR_H(textord_tabfind_force_vertical_text);
double_VAR_H(textord_tabfind_vertical_text_ratio);
double_VAR_H(textord_tabfind_aligned_gap_fraction);
INT_VAR_H(tessedit_parallelize);
BOOL_VAR_H(preserve_interword_spaces);
STRING_VAR_H(page_separator);
INT_VAR_H(lstm_choice_mode);
INT_VAR_H(lstm_choice_iterations);
double_VAR_H(lstm_rating_coefficient);
BOOL_VAR_H(pageseg_apply_music_mask);
//// ambigsrecog.cpp /////////////////////////////////////////////////////////
FILE *init_recog_training(const char *filename);
void recog_training_segmented(const char *filename, PAGE_RES *page_res,
volatile ETEXT_DESC *monitor, FILE *output_file);
void ambigs_classify_and_output(const char *label, PAGE_RES_IT *pr_it, FILE *output_file);
private:
// The filename of a backup config file. If not null, then we currently
// have a temporary debug config file loaded, and backup_config_file_
// will be loaded, and set to null when debug is complete.
const char *backup_config_file_;
// The filename of a config file to read when processing a debug word.
std::string word_config_;
// Image used for input to layout analysis and tesseract recognition.
// May be modified by the ShiroRekhaSplitter to eliminate the top-line.
Image pix_binary_;
// Grey-level input image if the input was not binary, otherwise nullptr.
Image pix_grey_;
// Original input image. Color if the input was color.
Image pix_original_;
// Thresholds that were used to generate the thresholded image from grey.
Image pix_thresholds_;
// Debug images. If non-empty, will be written on destruction.
DebugPixa pixa_debug_;
// Input image resolution after any scaling. The resolution is not well
// transmitted by operations on Pix, so we keep an independent record here.
int source_resolution_;
// The shiro-rekha splitter object which is used to split top-lines in
// Devanagari words to provide a better word and grapheme segmentation.