-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
173 lines (120 loc) · 4.63 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import itertools
import json
import pickle
import numpy as np
import torch
from settings import WORD_EMBEDDINGS_FILENAMES
from vocab import Vocab
def save_json(obj, filename):
with open(filename, 'wb') as f:
json.dump(obj, f)
def load_json(filename):
with open(filename, 'rb') as f:
obj = json.load(f)
return obj
def save_pickle(obj, filename):
with open(filename, 'wb') as f:
pickle.dump(obj, f)
def load_pickle(filename):
with open(filename, 'rb') as f:
obj = pickle.load(f)
return obj
def to_device(obj, device=None):
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if isinstance(obj, (list, tuple)):
return [to_device(o, device) for o in obj]
if isinstance(obj, dict):
return {k: to_device(o, device) for k, o in obj.items()}
if isinstance(obj, np.ndarray):
obj = torch.from_numpy(obj)
obj = obj.to(device)
return obj
def load_weights(model, filename):
# load trained on GPU models to CPU
if not torch.cuda.is_available():
def map_location(storage, loc): return storage
else:
map_location = None
state_dict = torch.load(str(filename), map_location=map_location)
if isinstance(model, torch.nn.DataParallel):
model = model.module
model.load_state_dict(state_dict)
def save_weights(model, filename):
if isinstance(model, torch.nn.DataParallel):
model = model.module
torch.save(model.state_dict(), str(filename))
def init_weights(modules):
if isinstance(modules, torch.nn.Module):
modules = modules.modules()
for m in modules:
if isinstance(m, torch.nn.Sequential):
init_weights(m_inner for m_inner in m)
if isinstance(m, torch.nn.ModuleList):
init_weights(m_inner for m_inner in m)
if isinstance(m, torch.nn.Linear):
m.reset_parameters()
torch.nn.init.xavier_normal_(m.weight.data)
# m.bias.data.zero_()
if m.bias is not None:
m.bias.data.normal_(0, 0.01)
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.xavier_normal_(m.weight.data)
m.bias.data.zero_()
if isinstance(m, torch.nn.Conv1d):
torch.nn.init.xavier_normal_(m.weight.data)
m.bias.data.zero_()
def get_sequences_lengths(sequences, masking=0, dim=1):
if len(sequences.size()) > 2:
sequences = sequences.sum(dim=2)
masks = torch.ne(sequences, masking).long()
lengths = masks.sum(dim=dim)
return lengths
def load_embeddings(cfg):
word_embeddings_filename = WORD_EMBEDDINGS_FILENAMES[cfg.word_embeddings]
word_embeddings = load_pickle(word_embeddings_filename)
return word_embeddings
def create_embeddings_matrix(word_embeddings, vocab):
embedding_size = word_embeddings[list(word_embeddings.keys())[0]].shape[0]
W_emb = np.zeros((len(vocab), embedding_size), dtype=np.float32)
special_tokens = {
t: np.random.uniform(-0.3, 0.3, (embedding_size,))
for t in (Vocab.START_TOKEN, Vocab.END_TOKEN, Vocab.UNK_TOKEN)
}
special_tokens[Vocab.PAD_TOKEN] = np.zeros((embedding_size,))
nb_unk = 0
for i, t in vocab.id2token.items():
if t in special_tokens:
W_emb[i] = special_tokens[t]
else:
if t in word_embeddings:
W_emb[i] = word_embeddings[t]
else:
W_emb[i] = np.random.uniform(-0.3, 0.3, embedding_size)
nb_unk += 1
print(f'Nb unk: {nb_unk}')
return W_emb
def extract_word_embeddings_style_dimensions(cfg, instances, vocab, style_vocab, W_emb):
sample_size = min(cfg.nb_style_dims_sentences, len(instances))
instances = np.random.choice(instances, size=sample_size, replace=False)
instances_grouped_by_style = [
[inst['sentence'] for inst in instances if inst['style'] == style]
for style in style_vocab.token2id.keys()
]
print(f'Styles instances: {[len(s) for s in instances_grouped_by_style]}')
sentences_embed = [
[
W_emb[vocab[t]]
for t in itertools.chain.from_iterable(style_sents)
if t in vocab
]
for style_sents in instances_grouped_by_style
]
means = [np.mean(e, axis=0) for e in sentences_embed]
print(f'Styles means: {[m.shape for m in means]}')
# get dimensions that have the biggest absolute difference
means_diff = np.abs(np.subtract(*means))
diff_sort_idx = np.argsort(-means_diff)
style_dims = diff_sort_idx[:cfg.nb_style_dims]
print(f'Style dimensions: {style_dims.shape}')
return style_dims