-
Notifications
You must be signed in to change notification settings - Fork 0
/
SIM.cpp
655 lines (562 loc) · 21.6 KB
/
SIM.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
#include <iostream>
#include <fstream>
#include <string>
#include <math.h>
#include <bitset>
#include <vector>
#include <bits/stdc++.h>
using namespace std;
const int DICTIONARY_SIZE = 16;
static unsigned int dictionary[DICTIONARY_SIZE];
static uint8_t RLE_MAX_SIZE = 8;
static uint8_t BITMASK_LENGTH = 4;
static uint8_t BIT_INDEX_LENGTH = 5;
static uint8_t DICTIONARY_INDEX_LENGTH = 4;
typedef struct bitmask_compression_t{
uint8_t bitmask_size;
bool compressed;
uint8_t first_mismatch_index;
uint8_t bitmask;
uint8_t dictionary_index;
}bitmask_compression_t;
typedef struct consecutive_bit_mismatch_t{
bool compressed;
uint8_t mismatch_size;
uint8_t dictionary_index;
uint8_t first_mismatch_index;
}consecutive_bit_mismatch_t;
typedef struct nonconsec_2bit_mismatch_t{
bool compressed;
uint8_t dictionary_index;
uint8_t first_mismatch_index;
uint8_t second_mismatch_index;
} nonconsec_2bit_mismatch_t;
typedef struct compressed_data_t{
unsigned int compressed_word;
uint8_t compress_format;
}compressed_data_t;
int string_to_int(string word, uint8_t length);
string uint8_to_string(uint8_t value, uint8_t bit_count);
string uint_to_string(unsigned int value);
void compression_top();
unsigned int* Read_original(unsigned int *size);
void create_dictionary(unsigned int original_size, unsigned int original_data[]);
bool bitmask_compression(unsigned int uncompressed_line, bitmask_compression_t *bc);
bool direct_matching(unsigned int uncompressed_line, uint8_t *dictionary_index);
bool consecutive_bit_mismatch(unsigned int uncompressed_line, consecutive_bit_mismatch_t *cbm);
bool nonconsec_2bit_mismatch (unsigned int uncompressed_line, nonconsec_2bit_mismatch_t *n2bm);
bool RLE_compression(unsigned int index, unsigned int uncompressed_data[], unsigned int array_size, uint8_t *repeat_count);
vector<string> compression (unsigned int uncompressed_data[], unsigned int uncompressed_array_size);
void create_compressed_file(vector<string> &compressed_data);
void decompression_top();
void read_compressed_file(vector<compressed_data_t> &compressed_data_vect);
void decode_string_to_compressed_lines(string compressed_text, vector<compressed_data_t> &compressed_data_vect);
unsigned int bitmask_decompression(unsigned int compressed_word);
unsigned int consecutive_bit_mismatch_decompression(unsigned int compressed_word, uint8_t format);
unsigned int nonconsec_2bit_mismatch_decompression(unsigned int compressed_word);
void decompression (unsigned int compressed_word, uint8_t format, vector<unsigned int>&decompressed_data);
void create_decompressed_file(vector <unsigned int> &decompressed_data);
int main ( int argc, char *argv[] ){
if (strcmp(argv[1],"1")==0){
compression_top();
}
else if(strcmp(argv[1],"2")==0){
decompression_top();
}
return 0;
}
int string_to_int(string word, uint8_t length){
int value = 0;
for (int i=0;i<length;i++){
value += stoi(word.substr(i,1))*(int)pow(2.0,(length-1-i));
}
return value;
}
string uint8_to_string(uint8_t value, uint8_t bit_count){
string string_val = "";
for (int8_t i=bit_count-1;i>=0; i--){
string_val += to_string((value & (1<<i))>>i) ;
}
return string_val;
}
string uint_to_string(unsigned int value){
string string_val = "";
for (int8_t i=31;i>=0; i--){
string_val += to_string((value & (1<<i))>>i) ;
}
return string_val;
}
/////////////// compression functions /////////////////////////
void compression_top(){
unsigned int original_size = 0; // size of the uncompressed dataset
///////// get original data /////
unsigned int* dyn_arr = Read_original(&original_size);
unsigned int original_data[original_size] = {0};
for (int i=0;i<original_size;i++){
original_data[i] = dyn_arr[i];
}
delete[] dyn_arr;
create_dictionary(original_size, original_data);
vector<string> compressed_data;
compressed_data = compression(original_data,original_size);
///////// write compressed data & dictionary to a file ////////
create_compressed_file(compressed_data);
return;
}
unsigned int* Read_original(unsigned int *size){
string uncompressed_line;
ifstream original_file("original.txt");
//////// find the size of original dataset ///
while(getline(original_file,uncompressed_line)){
*size = *size + 1;
}
original_file.close();
unsigned int * original_data = new unsigned int [*size]();
unsigned int index = 0;
original_file.open("original.txt");
while (getline (original_file, uncompressed_line)) {
original_data[index] = (unsigned int )string_to_int(uncompressed_line,32);
index++;
}
original_file.close();
return original_data;
}
void create_dictionary(unsigned int original_size, unsigned int original_data[]){
vector<unsigned int> unique_values;
vector<int> unique_value_frequency;
unsigned int unique_count = 0;
///// identify unique values //////////
for (int i=0;i<original_size;i++){
int j;
for (j=0;j<=i;j++){
if (original_data[i]==original_data[j]){
break;
}
}
if (i==j){
unique_values.push_back(original_data[i]);
unique_count++;
}
}
///// identify frequency of each unique value
unsigned int repeat_count = 0;
for (int i=0;i<unique_count;i++){
repeat_count = 0;
for (int j=0; j<original_size;j++){
if (original_data[j] == unique_values[i]){
repeat_count++;
}
}
unique_value_frequency.push_back(repeat_count);
}
////////////// create dictionary from unique values ////////////
for (int i=0;i<DICTIONARY_SIZE;i++){
int max_count = unique_value_frequency[0];
int max_index = 0;
for (int j=0; j<unique_count;j++){
if (max_count < unique_value_frequency[j]){
max_count = unique_value_frequency[j];
max_index = j;
}
}
unique_value_frequency[max_index] = -1; // remove the current max value
dictionary[i] = unique_values[max_index];
}
return;
}
bool bitmask_compression(unsigned int uncompressed_line, bitmask_compression_t *bc){
uint8_t bitmask_size = bc->bitmask_size;
uint8_t bitmask = 0; // for a correct bitmask atleast 1 bit should be '1'
bool compressed = 0;
uint8_t dictionary_index = 0;
uint8_t first_mismatch_index = 0;
uint8_t last_mismatch_index = 0;
for (uint8_t i=0;i<DICTIONARY_SIZE;i++){
unsigned int compared_line = uncompressed_line ^ dictionary[i]; // find mismatches
uint8_t mismatch_count = 0;
bool mismatch_found = 0;
first_mismatch_index = 0;
for (int index=31;index>=0;index--){
if(compared_line & (1<<index)){ //check bit by bit for a mismatch
if(mismatch_found == 0){
first_mismatch_index = index; // identify first mismatch index
mismatch_found = 1;
}
last_mismatch_index = index;
mismatch_count += 1;
}
}
if (mismatch_found && (mismatch_count <= bitmask_size) && (first_mismatch_index-last_mismatch_index < bitmask_size)){
uint8_t bitmask_end_index = first_mismatch_index-bitmask_size+1;
if (first_mismatch_index < bitmask_size-1){ // when first bits of mask are 0s
bitmask_end_index = 0;
}
bitmask = (compared_line >> bitmask_end_index) & ((1 << bitmask_size)-1);
compressed = 1;
dictionary_index = i; // get the dictionary index of correct dictionary word
break;
}
}
////////// return the compression details
bc->compressed = compressed;
bc->bitmask = bitmask;
bc->first_mismatch_index = 31-first_mismatch_index; //start counting from left
bc->dictionary_index = dictionary_index;
return compressed;
}
bool direct_matching(unsigned int uncompressed_line, uint8_t *dictionary_index){
*dictionary_index = 0;
bool compressed = 0;
for (uint8_t i=0;i<DICTIONARY_SIZE;i++){
if (uncompressed_line == dictionary[i]){
compressed = 1;
*dictionary_index = i; // return the index of matched dictionary value
break;
}
}
return compressed;
}
bool consecutive_bit_mismatch(unsigned int uncompressed_line, consecutive_bit_mismatch_t *cbm){
uint8_t mask_size = cbm->mismatch_size;
bool compressed = 0;
uint8_t dictionary_index = 0;
uint8_t first_mismatch_index = 0;
unsigned int mask = 0;
for(uint8_t i=0;i<DICTIONARY_SIZE;i++){
unsigned int compared_line = uncompressed_line ^ dictionary[i]; // find mismatches
for (uint8_t index=mask_size-1;index<32;index++){
mask = ((1<<mask_size)-1)<<(index-mask_size+1); // make lsb bits 1s and shift left
if (compared_line == mask){
compressed = 1;
dictionary_index = i;
first_mismatch_index = index;
break;
}
}
if (compressed){
break;
}
}
////// update structure values //////
cbm->compressed = compressed;
cbm->dictionary_index = dictionary_index;
cbm->first_mismatch_index = 31 - first_mismatch_index; // start counting from left
return compressed;
}
bool nonconsec_2bit_mismatch (unsigned int uncompressed_line, nonconsec_2bit_mismatch_t *n2bm){
bool compressed = 0;
uint8_t dictionary_index = 0;
uint8_t first_mismatch_index = 0;
uint8_t second_mismatch_index = 0;
unsigned int mask;
for (uint8_t i=0; i<DICTIONARY_SIZE;i++){
unsigned int compared_line = uncompressed_line ^ dictionary[i]; // find mismatches
for (uint8_t j=0;j<=30;j++){
for (uint8_t k=j+1;k<=31;k++){
mask = (1<<(j)) | (1<<(k));
if (compared_line == mask){
compressed = 1;
dictionary_index = i;
first_mismatch_index = k; // left side mismatch
second_mismatch_index = j; // right side mismatch
break;
}
}
if (compressed){
break;
}
}
if (compressed){
break;
}
}
////// update struct values ////
n2bm->compressed = compressed;
n2bm->dictionary_index = dictionary_index;
n2bm->first_mismatch_index = 31 - first_mismatch_index; //start counting from left
n2bm-> second_mismatch_index = 31 - second_mismatch_index; //start counting from left
return compressed;
}
bool RLE_compression(unsigned int index, unsigned int uncompressed_data[], unsigned int array_size, uint8_t *repeat_count){
bool compressed = 0;
if (index == 0){
compressed = 0;
return compressed;
}
if (uncompressed_data[index] != uncompressed_data[index-1]){
compressed = 0;
return compressed;
}
*repeat_count = 0;
unsigned int value = uncompressed_data[index-1]; // the value before current index
for (uint8_t i = 0;i<RLE_MAX_SIZE;i++){
if (index + i >= array_size){
break;
}
else if (uncompressed_data[index + i] == value){
*repeat_count = *repeat_count + 1;
}
else{
break;
}
}
compressed = 1;
return compressed;
}
vector<string> compression (unsigned int uncompressed_data[], unsigned int uncompressed_array_size){
vector <string> compressed_data;
/////////// create initial details of each compression type //////////
// bitmask compression
bitmask_compression_t bc;
bc.bitmask_size = 4;
// direct match
uint8_t dictioanry_index;
// consecutive 1,2,4 bit mismatch compression
consecutive_bit_mismatch_t cbm_1, cbm_2, cbm_4;
cbm_1.mismatch_size = 1;
cbm_2.mismatch_size = 2;
cbm_4.mismatch_size = 4;
// anywhere 2 bit mismatch compression
nonconsec_2bit_mismatch_t n2bm;
// RLE compression
uint8_t repeat_count;
unsigned int index = 0;
bool compressed = 0;
bool RLE_compressed_last_word = 0;
while (index < uncompressed_array_size){
compressed = 0;
//////////// RLE compression ///////
if (!RLE_compressed_last_word){ // RLE compression happens only when last compression is not RLE
compressed = RLE_compression(index, uncompressed_data, uncompressed_array_size, &repeat_count);
if (compressed){
compressed_data.push_back("001" + uint8_to_string((repeat_count-1),3)) ; //0 means 1 repeat, 1 means 2 repeats
index += repeat_count;
RLE_compressed_last_word = 1;
continue;
}
}
else{
RLE_compressed_last_word = 0;
}
////////// direct matching /////////
compressed = direct_matching(uncompressed_data[index], &dictioanry_index);
if (compressed){
compressed_data.push_back("111"+uint8_to_string(dictioanry_index,4));
index++;
continue;
}
///////// 1 bit mismatch compression ////////
compressed = consecutive_bit_mismatch(uncompressed_data[index],&cbm_1);
if (compressed){
compressed_data.push_back("011"+uint8_to_string(cbm_1.first_mismatch_index,5)+uint8_to_string(cbm_1.dictionary_index,4));
index++;
continue;
}
//////// 2 bit mismatch compression //////////
compressed = consecutive_bit_mismatch(uncompressed_data[index],&cbm_2);
if (compressed){
compressed_data.push_back("100"+uint8_to_string(cbm_2.first_mismatch_index,5)+uint8_to_string(cbm_2.dictionary_index,4));
index++;
continue;
}
//////// 4 bit mismatch compression //////////
compressed = consecutive_bit_mismatch(uncompressed_data[index],&cbm_4);
if (compressed){
compressed_data.push_back("101"+uint8_to_string(cbm_4.first_mismatch_index,5)+uint8_to_string(cbm_4.dictionary_index,4));
index++;
continue;
}
//////// bitmask compression //////////
compressed = bitmask_compression(uncompressed_data[index],&bc);
if (compressed){
compressed_data.push_back("010"+uint8_to_string(bc.first_mismatch_index,5)+uint8_to_string(bc.bitmask,4)+uint8_to_string(bc.dictionary_index,4));
index++;
continue;
}
/////// 2 bit mismatch anywhere compression //////////
compressed = nonconsec_2bit_mismatch(uncompressed_data[index],&n2bm);
if (compressed){
compressed_data.push_back("110"+uint8_to_string(n2bm.first_mismatch_index,5)+uint8_to_string(n2bm.second_mismatch_index,5)+uint8_to_string(n2bm.dictionary_index,4));
index ++;
continue;
}
//////// no compression happens
compressed_data.push_back("000"+ uint_to_string(uncompressed_data[index]));
index++;
}
return compressed_data;
}
void create_compressed_file(vector<string> &compressed_data){
string compressed_text = "";
for (int i=0;i<compressed_data.size(); i++){
compressed_text += compressed_data[i];
}
unsigned int length = compressed_text.length();
uint8_t extra_0_count = 32 - length % 32; // add extra zeros at the end of the compressed data to match the size
string extra_0s = "";
for (int i=0;i<extra_0_count;i++){
extra_0s += "0";
}
compressed_text += extra_0s;
length = compressed_text.length(); // find the length after adding extra 0s
ofstream compressed_file("cout.txt");
for (int i=0;i<length;i=i+32){
compressed_file << compressed_text.substr(i,32) << endl; // write the com pressed data
}
compressed_file << "xxxx" << endl; // middle "xxxx" sign
for (int i=0; i<DICTIONARY_SIZE; i++){
compressed_file << bitset<32>(dictionary[i]) << endl; // write dictionary entries
}
compressed_file.close();
return;
}
/////////////////////// decompression functions ///////////////////////////
void decompression_top(){
vector<compressed_data_t> compressed_data_vect;
vector<unsigned int> decompressed_data;
read_compressed_file(compressed_data_vect);
unsigned int compressed_word_count = compressed_data_vect.size();
unsigned int decompressed_word = 0;
for (auto& compressed_obj:compressed_data_vect){
decompression(compressed_obj.compressed_word,compressed_obj.compress_format,decompressed_data);
}
create_decompressed_file(decompressed_data);
return;
}
void read_compressed_file(vector<compressed_data_t> &compressed_data_vect){
string compressed_text = "";
string compressed_line;
ifstream compressed_file("compressed.txt");
uint8_t dictionary_index = 0;
bool second_part = 0;
while (getline (compressed_file, compressed_line)){
if (compressed_line.compare("xxxx")==0){
second_part = 1;
continue;
}
if (second_part==0){
compressed_text += compressed_line;
}
else{
dictionary[dictionary_index] = (unsigned int )string_to_int(compressed_line,32);
dictionary_index ++;
}
}
compressed_file.close();
decode_string_to_compressed_lines(compressed_text,compressed_data_vect); // seperate compressed words and their compress formats
}
void decode_string_to_compressed_lines(string compressed_text, vector<compressed_data_t> &compressed_data_vect){
unsigned int index = 0;
unsigned int compressed_word = 0;
string compressed_word_text = "";
unsigned int compressed_text_size = compressed_text.size();
string format_text = "";
uint8_t format = 0;
uint8_t compressed_word_size = 0;
compressed_data_t cd;
while (index<compressed_text_size-2){
format_text = compressed_text.substr(index,3); // first 3 bits of each compress line
if (format_text.compare("000")==0){ // no compression
compressed_word_size = 32;
}
else if (format_text.compare("001")==0){ // RLE compression
compressed_word_size = 3;
}
else if (format_text.compare("010")==0){ //bitmask compression
compressed_word_size = 13;
}
else if (format_text.compare("011")==0){ //1 bit consecutive mismatch
compressed_word_size = 9;
}else if (format_text.compare("100")==0){ //2 bit consecutive mismatch
compressed_word_size = 9;
}
else if (format_text.compare("101")==0){ //4 bit consecutive mismatch
compressed_word_size = 9;
}
else if (format_text.compare("110")==0){ // 2 bit mismatch anywhere
compressed_word_size = 14;
}
else {
compressed_word_size = 4; // direct match
}
if (index+3+compressed_word_size>=compressed_text_size){ // check for the end of the array
break;
}
index += 3;
compressed_word_text = compressed_text.substr(index,compressed_word_size);
format = string_to_int(format_text,3);
compressed_word = string_to_int(compressed_word_text,compressed_word_size); // implicitly cast to uint8_t
cd.compress_format = format;
cd.compressed_word = compressed_word;
compressed_data_vect.push_back(cd);
index += compressed_word_size; // go to the start of the next format + compressed word
}
}
unsigned int bitmask_decompression(unsigned int compressed_word){
///// extracting each part of the word
uint8_t first_mismatch_index = 31 - (compressed_word >> (BITMASK_LENGTH+DICTIONARY_INDEX_LENGTH)) & ((1<<BIT_INDEX_LENGTH)-1); // counting starts from left side
uint8_t bitmask = (compressed_word >> DICTIONARY_INDEX_LENGTH) & ((1<<BITMASK_LENGTH)-1);
uint8_t dictionary_index = compressed_word & ((1<<DICTIONARY_INDEX_LENGTH)-1);
unsigned int uncompressed_word = dictionary[dictionary_index] ^ (bitmask << (first_mismatch_index-BITMASK_LENGTH+1));
return uncompressed_word;
}
unsigned int consecutive_bit_mismatch_decompression(unsigned int compressed_word, uint8_t format){
uint8_t mismatch_count = 0;
switch (format){
case(3):mismatch_count = 1;
break;
case(4):mismatch_count = 2;
break;
case(5):mismatch_count = 4;
break;
}
//////// extract parts of the compressed word
uint8_t first_mismatch_index = 31 - (compressed_word >> DICTIONARY_INDEX_LENGTH) & ((1<<BIT_INDEX_LENGTH)-1);
uint8_t dictionary_index = compressed_word & ((1<<DICTIONARY_INDEX_LENGTH)-1);
unsigned int uncompressed_word = dictionary[dictionary_index] ^ (((1<<mismatch_count)-1)<<(first_mismatch_index-mismatch_count+1));
return uncompressed_word;
}
unsigned int nonconsec_2bit_mismatch_decompression(unsigned int compressed_word){
uint8_t first_mismatch_location = 31 - (compressed_word >> (DICTIONARY_INDEX_LENGTH+BIT_INDEX_LENGTH)) & ((1<<BIT_INDEX_LENGTH)-1);
uint8_t second_mismatch_location = 31 - (compressed_word >> DICTIONARY_INDEX_LENGTH) & ((1<< BIT_INDEX_LENGTH)-1);
uint8_t dictionary_index = compressed_word & ((1<<DICTIONARY_INDEX_LENGTH)-1);
unsigned int mask = (1<< first_mismatch_location) | (1 << second_mismatch_location);
unsigned int uncompressed_word = dictionary[dictionary_index] ^ mask;
return uncompressed_word;
}
void decompression (unsigned int compressed_word, uint8_t format, vector<unsigned int>&decompressed_data){
unsigned int decompressed_word = 0;
if (format == 0){
decompressed_word = compressed_word;
decompressed_data.push_back(decompressed_word);
}
else if (format == 1){
decompressed_word = decompressed_data.back();
for (int i=0;i<(compressed_word+1);i++){
decompressed_data.push_back(decompressed_word);
}
}
else if (format == 2){
decompressed_word = bitmask_decompression(compressed_word);
decompressed_data.push_back(decompressed_word);
}
else if ((format==3)||(format==4)||(format==5)){
decompressed_word = consecutive_bit_mismatch_decompression(compressed_word,format);
decompressed_data.push_back(decompressed_word);
}
else if (format == 6){
decompressed_word = nonconsec_2bit_mismatch_decompression(compressed_word);
decompressed_data.push_back(decompressed_word);
}
else {
decompressed_word = dictionary[compressed_word];
decompressed_data.push_back(decompressed_word);
}
}
void create_decompressed_file(vector <unsigned int> &decompressed_data){
ofstream decompressed_file("dout.txt");
for (auto decompressed_word:decompressed_data){
decompressed_file << bitset<32>(decompressed_word) << endl;
}
decompressed_file.close();
}