-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumerals.py
389 lines (282 loc) · 9.85 KB
/
numerals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# -*- coding: utf-8 -*-
# python
"""Extended math
This module provides extended functions to the math module.
"""
# Copyright (C) 2010 Dennis Fink
#
# This code is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This code is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import math
__VERSION__ = "1.0"
__AUTHOR__ = "the_metalgamer"
__LICENSE__ = "GPL"
def is_even(number):
"""Returns True if number is a even number, else returns False"""
return True if number % 2 == 0 else False
def is_odd(number):
"""Returns True if number is a odd number, else returns False"""
return True if number % 2 != 0 else False
# Forms of factorization
def is_prime(number):
"""Returns True if number is a prime number, else returns False"""
for x in range(2, int(number ** 0.5) + 1):
if number % x == 0:
return False
return True
def is_composite(number):
"""Returns True if number is a composite number. else returns False"""
if len(prime_factorize(number)) >= 1 and is_prime(number) != True:
return True
else:
return False
def is_semiprime(number):
"""Returns True if number is a semiprime number, else returns False"""
return True if len(prime_factorize(number)) == 2 else False
def is_pronic(number):
"""Returns True if number is a pronic number, else returns False"""
factors = factorize(number)
for i in range(0, len(factors)):
try:
if factors[i] + 1 == factors[i + 1] \
and factors[i] * factors[i + 1] == number:
return True
except IndexError:
return False
def is_sphenic(number):
"""Returns True if number is a sphenic number, else returns False"""
return True if len(prime_factorize(number)) == 3 else False
def is_squarefree(number):
"""Returns True if number is a squarefree number, else returns False"""
factors = factorize(number)
for i in factors:
if is_square(i):
return False
else:
return True
def is_powerful(number):
"""Returns True if number is a powerful number, else returns False"""
factors = prime_factorize(number)
for i in factors:
if number % i == 0 and number % (i ** 2) == 0:
pass
else:
return False
return True
def is_k_rough(number, k=1):
"""Returns True if number is a k rough number, else returns False"""
factors = prime_factorize(number)
for i in factors:
if i >= k or i == k:
pass
else:
return False
return True
def is_unusual(number):
"""Returns True if number is an unusual number, else retruns False"""
return True if prime_factorize(number)[-1] >= math.sqrt(number) else False
# Constrained divisor sums
def is_perfect(number):
"""Returns True if number is a perfect number, else returns False"""
return True if sum_factors(number) == 2 * number else False
def is_almost_perfect(number):
"""Returns True if number is a almost perfect number, else returns False"""
return True if sum_factors(number) == 2 * number - 1 else False
def is_quasiperfect(number):
"""Returns True if number is a quasiperfect number, else returns False"""
return True if sum_factors(number) == 2 * number + 1 else False
def is_multiply_perfect(number, k=1):
"""Returns True if number is a k-perfect number, else returns False"""
return True if sum_factors(number) == k * number else False
def is_k_hyperperfect(number, k=1):
"""Returns True if number is a k-hyperperfect number, else returns False"""
if number == 1 + k * (sum_factors(number) - number - 1):
return True
else:
return False
def is_square(number):
"""Returns True if number is a square number, else returns False"""
if number == 1:
return False
return True if number % sqrt(number) == 0 else False
# def is_semiperfect(number):
# """Returns True if number is a semiperfect number, else returns False"""
# if is_abundant(number):
# if is_perfect(number):
# return False
# else:
# return True
# elif is_perfect(number):
# if is_abundant(number):
# return False
# else:
# return False
#
# Numbers with many divisors
def is_abundant(number):
"""Returns True if number is an abundant number, else returns False"""
return True if sum_factors(number) >= 2 * number else False
# Other
def is_palindrome(number):
"""Returns True if number is a palindrome ,else returns False"""
return True if str(number) == str(number)[::-1] else False
def is_friendly_pair(number1, number2):
"""
Returns True if number1 and number2 are friendly pairs,
else returns False
"""
if abundance(number1) == abundance(number2):
return True
else:
return False
def is_sublime(number):
"""Returns True if number is a sublime number, else returns False"""
if is_perfect(len(factorize(number))) and is_perfect(sum_factors(number)):
return True
else:
return False
def is_triangular(number):
"""Returns True if number is a triangular number, else returns False"""
return True if number % 3 == 0 or number % 9 == 1 else False
def is_centered_triangular(number):
return True if number % 3 == 1 else False
def is_centered_square(number):
return True if number % 4 == 1 else False
def is_pentagonal(number):
test = str((math.sqrt((24 * number + 1)) + 1) / 6)
if test.partition('.')[2] == '0':
return True
else:
return False
def is_centered_pentagonal(number):
return True if number % 5 == 1 else False
def is_hexagonal(number):
test = str((math.sqrt((8 * number + 1)) + 1) / 4)
if test.partition('.')[2] == '0':
return True
else:
return False
def is_centered_hexagonal(number):
return True if number % 6 == 1 else False
def is_centered_heptagonal(number):
return True if number % 7 == 1 else False
def is_centered_octagonal(number):
return True if number % 8 == 1 else False
def is_centered_nonagonal(number):
return True if number % 9 == 1 else False
def is_centered_decagonal(number):
return True if number % 10 == 1 else False
def is_happy(number):
square = dict([(c, int(c) ** 2) for c in "0123456789"])
s = set()
while (number > 1) and (number not in s):
s.add(number)
number = sum(square[d] for d in str(number))
return number == 1
#def is_frugal(number):
# prime_factorize_digits_lenght = 0
# factors = prime_factorize(number)
# for i in factors:
# prime_factorize_digits_lenght += len(str(i))
# if len(str(number)) <= prime_factorize_digits_lenght:
# return True
# else:
# return False
# def is_weird(number):
# if is_abundant(number):
# if is_semiperfect(number):
# return False
# else:
# return True
#
# #if is_abundant(number) and not is_semiperfect(number):
# # return True
# #else:
# # return False
#
#
def factorize(number, proper=False):
"""Returns the factors of the number as a list"""
factors = []
for i in range(1, number + 1):
if number % i == 0:
factors.append(i)
if proper:
factors = factors[:-1]
return factors
def sum_factors(number, proper=False):
"""Returns the sum of the factors for the given number"""
return sum(factorize(number, proper=proper))
def prime_factorize(number):
"""Returns the prime factors of the number as a list"""
factors = []
lastresult = number
if number == 1:
return [1]
while lastresult != 1:
prime = 2
while lastresult % prime != 0:
prime += 1
factors.append(prime)
lastresult /= prime
return factors
def pronic(number):
"""Returns the pronic number of the given number"""
return number * (number + 1)
def abundance(number):
"""
Returns the abundance of the given number,
if it is a abundant number, else it returns 0
"""
if is_abundant(number):
return sum_factors(number) - (2 * number)
else:
return 0
def factorial(number):
"""Returns the factorial of the given number"""
factorialnumber = 1
for i in range(number, 0, -1):
factorialnumber *= i
return factorialnumber
def generate_fibonacci(first=0, second=1, step=1):
"""Generates a fibonacci sequence and returns it as a list"""
sequence = [first, second]
for i in range(0, step + 1):
sequence.append(sequence[i] + sequence[i + 1])
return sequence
# def pythagoras(a=0, b=0, c=0):
# if a and b and c:
# return True if ((a ** 2) + (b ** 2)) == c else False
# elif a and b:
# return math.sqrt((a ** 2) + (b ** 2))
# elif a and c:
# return math.sqrt((c ** 2) - (a ** 2))
# elif b and c:
# return math.sqrt((c ** 2) - (b ** 2))
#
def _is_answer_to_everything(number):
return True if number == 42 else False
def digitsum(number):
"""Returns the sum of the digits of the given number"""
result = 0
for i in str(number):
result += int(i)
return result
def version():
"""Returns the version of this module"""
return __VERSION__
def info():
"""Prints info about this module"""
print "Author:", __AUTHOR__
print "License:", __LICENSE__
print "Version:", __VERSION__