forked from EleutherAI/lm-evaluation-harness
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
53 lines (45 loc) · 1.56 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import argparse
import json
import numpy as np
import random
import itertools
from lm_eval import models, tasks
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model', required=True)
parser.add_argument('--model_args', default="")
parser.add_argument('--tasks', default="all_tasks")
parser.add_argument('--provide_description', action="store_true")
parser.add_argument('--num_fewshot', type=int, default=1)
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--output_path', default=None)
parser.add_argument('--limit', default=None)
return parser.parse_args()
def main():
args = parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
lm = models.get_model(args.model).create_from_arg_string(args.model_args)
if args.tasks == "all_tasks":
task_names = tasks.ALL_TASKS
else:
task_names = args.tasks.split(",")
task_dict = tasks.get_task_dict(task_names)
results = {}
for task_name, task in task_dict.items():
if not task.has_validation_docs():
continue
result = task.evaluate(
docs=itertools.isslice(task.validation_docs(), 0, args.limit),
lm=lm,
provide_description=args.provide_description,
num_fewshot=args.num_fewshot,
)
results[task_name] = result
dumped = json.dumps(results, indent=2)
print(dumped)
if args.output_path:
with open(args.output_path, "w") as f:
f.write(dumped)
if __name__ == "__main__":
main()