Generalized Procrustes Analysis

The following notes on generalized Procrustes Analysis are based on: I. Borg and Patrick J. F. Groenen,
Modern Multidimensional Scaling (2nd ed.) (Springer, NY, 2005). Chapter 21.

While scaling and translation are complicated (indeed, they are complicated for any non-orthogonal
transformation), in Procrustes we've elected to use a simple scaling/translation methodology. So we
will assume that the input matrices, Ay, are scaled and translated by the normal rules, if that is desired.
The following method corresponds to the first approach mentioned in the book of Borg and Groenen.

The objective function is obtained by transforming multiple matrices in generalized Procrustes
analysis. So:

min > AT - AT = wmin Y T [(Aka—AlTl)T (Aka—AlTl)]

Ty, T,,... T 1<k<I<N T,,T5,... T 1<k<I<N

can be solved by rewriting this as

2

. 1
mip S| D, [ATi-) AT
T,,Ts,...Tx 1<k<K 1<I<KN
\ 14k }

Then you can decide to optimize this expression either by reference to the mean of the matrices or by
optimizing one transformation at a time. The former is arguably easier to implement (and generalize),
though it isn't what we are doing right now. In that case, for each £k =1,2,..., K, one solves the
single-matrix Procrustes problem,

2

: (4) (i-1)
@ Aka — Z AlTl
1<I<KN
l#k

where it is sensible (but not required) to initialize the transformations to the identity, Tg)) =1. As long
as the optimization is linear, this algorithm converges, and is equivalent to the usual approach. This
notation is a little bad, because in actually, for I < k, you would be using the latest transformation, Tl(i)
in the summation.

The nice thing about this algorithm is that it generalizes to any generalized Procrustes problem. If you
pass multple matrices to any Procrustes method, then you end up with the generic problem

i 2
min Y [[SrART, — SiATy|
~—

Ty,Ts,...Tx 1<k<I<N
SI,S2,. . .SK

which can be (approximately) solved by iteratively performing, for k =1,2,..., K,

2

@/H S’(j—l)AkTg) o Z Sl(i—l)AlTl(i_l)
I<IKN
Ik

then

2

e || (1) a1 68) - 35 (1) N 55
(S(i))f 1<IKN

14k

until it converges. This notation is a little bad, because in actually, for [< k, you would be using the
latest transformations, Tl(i) and Sl(i) in the summation. But breaking the sum into two parts just to
make this explicit seems undesirable.

Proposal

Problem Description

1 2
min Y [[SrART: — SiATY|
~—~

T, Ty, .. Tx 1<k<I<N
S1,S2,...Sk

Note: the traditional problem corresponds to N4 = 2 with Sy = Ty = 1.

Input

1. A Alist of matrices, {A},. These are matrices to be transformed.

2. s_type Alist of length N4 specifying the types of left-hand-side transformations for each A,
matrix. If only one element (not a list) is passed, ideally we could just assume every element in the
list was equal to that element. The types we currently support are:

o identity (no transformation; default)

o orthogonal
o rotational
o symmetric

o permutation

3. T_type Alist of length N4 specifying the types of right-hand-side transformations. If only one
element (not a list) is passed, ideally we could just assume that every element in the list was equal
to that element. The types we currently support are:

4. s_eq_T Alist of logical variables indicating whether the left-hand-side and right-hand-side
transformations are the same, S;, = T.. Optional argument; default to False .

5. Optional argument. Lists of flags to indicate options for translation, scaling, zero-row-removal,
zero-column-removal, and zero-padding. Default as usual.

6. s and T Initial guesses for the S;, and T}. Default to identity. We do not help users set this up; if
users want to do some fancy-schmancy permutation Procrustes guessing, they are responsible for
doing that themselves, potentially using utilities we have already provided. We may provide
utilities (later) to help with this but it is not part of this issue/functionality.

Check

1. If orthogonal or 2-sided permutation with the same transformation, the matrices must all have the
same shape and be square (and symmetric in the two-sided-orthogonal-with-one-transformation
case); otherwise all matrices must have the same shape. The default options for zero-padding
should ensure this.

2. Input transformation matrices should be checked to ensure that they are of the right type; if
Procrustes is used to find the closest matrix of the correct type. If Sy = T}, is expected but not
satisfied, both inputs are replaced by their average, then the closest transformation matrix of the
desired type is constructed. Some user output/warnings should indicate what types of work had
to be done to initialize the problem appropriately.

3. At least one element of s_type and T_type should be non-identity, or otherwise there is
nothing to do.

4. All of the other Procrustes methods can be tested against since they are special cases of this one
with Ny = 2.

5.1f s_eq_T(k) = True, then since the two transformations are supposed to be the same, it must be
that s_type(k) = T_type(k) . Otherwise print an informative error message and fail.

Algorithm (Generalized Flip-Flop Algorithm)

This algorithm is a greedy-ish fixed-point iteration algorithm. When the problem is convex, the
solution is found. Otherwise a local minima is found.

1. For each A}, matrix, you should shift, scale, and add/remove zero rows as instructed.

2.Foreach k =1,2,..., N4 with Typer NOt equal to the Identity matrix.Use the one-sided
Procrustes method of type Tiype,i to solve the problem:

2

. (i-1) i—1) 1)
@ S A, T Z S A T
1<I<N

14k

(0
Tk

or if s_eq_T(i) = True, then use the two-sided Procrustes method of type Ty, to solve the
problem:

2

min (T,(j) - Y sfvaTi Y
g 1SN
14k

3.Foreach k =1,2,..., N4 with Sype ;. NOt equal to the Identity matrix. Use the one-sided
Procrustes method of type S¢yper to solve the problem:

2

|| (39 i () - 5 (567 i o5

(s)' o

e orif s_eq T(i) = True, then use the two-sided Procrustes method of type Ty, to solve the
problem:

2

min (T,i) AT - Y s AT Y

TS) 1<I<KN
l#k

4. If not converged, go back to step 2.

