-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathGeoDA.py
611 lines (364 loc) · 16.6 KB
/
GeoDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
"""
Created on Thu Sep 26 01:34:01 2019
@author: AliRah
"""
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import torchvision.models as torch_models
import matplotlib.pyplot as plt
import numpy as np
import torch
import os
from utils import get_label
from utils import valid_bounds, clip_image_values
from PIL import Image
from torch.autograd import Variable
from numpy import linalg
import foolbox
import math
import generate_2d_dct_basis
import time
###############################################################
###############################################################
# Parameters
grad_estimator_batch_size = 40 # batch size for GeoDA
verbose_control = 'Yes'
#verbose_control = 'No'
Q_max = 4000
torch.manual_seed(992)
torch.cuda.manual_seed(992)
np.random.seed(992)
sub_dim=75
tol = 0.0001
sigma = 0.0002
mu = 0.6
#dist = 'l2'
dist = 'linf'
dist = 'l1'
dist = 'linf'
search_space = 'sub'
image_iter = 0
image_num = 64
inp = "./data/ILSVRC2012_val_000000" + str(image_num) + ".JPEG"
###############################################################
# Functions
###############################################################
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
def inv_tf(x, mean, std):
for i in range(len(mean)):
x[i] = np.multiply(x[i], std[i], dtype=np.float32)
x[i] = np.add(x[i], mean[i], dtype=np.float32)
x = np.swapaxes(x, 0, 2)
x = np.swapaxes(x, 0, 1)
return x
###############################################################
def from_np_to_01(imnp):
im01 = inv_tf(imnp.cpu().numpy().squeeze(), mean, std)
im01= np.transpose(im01, (2, 0, 1))
return im01
###############################################################
def topk_3D (grad, k):
grad_flatten = grad.cpu().numpy().reshape(-1)
grad_flatten_torch = torch.tensor(grad_flatten)
topk, indices = torch.topk(torch.abs(grad_flatten_torch), k)
#grad_k_flatten = torch.zeros([2*4*3])
grad_k_flatten = torch.zeros([224*224*3])
for ind in indices:
grad_k_flatten[ind] = grad_flatten[ind] + 0
grad_k_flatten_np = grad_k_flatten.cpu().numpy()
#grad_k_3D_np = np.reshape(grad_k_flatten_np, ( 3, 2, 4))
grad_k_3D_np = np.reshape(grad_k_flatten_np, ( 3, 224, 224))
grad_3D_torch = torch.tensor(grad_k_3D_np)
grad_3D_sign = torch.sign(grad_3D_torch)
return grad_3D_sign
###############################################################
def is_adversarial(given_image, orig_label):
predict_label = torch.argmax(net.forward(Variable(given_image, requires_grad=True)).data).item()
return predict_label != orig_label
###############################################################
def find_random_adversarial(image, epsilon=1000):
num_calls = 1
step = 0.02
perturbed = x_0
while is_adversarial(perturbed, orig_label) == 0:
pert = torch.randn([1,3,224,224])
pert = pert.to(device)
perturbed = image + num_calls*step* pert
perturbed = clip_image_values(perturbed, lb, ub)
perturbed = perturbed.to(device)
num_calls += 1
return perturbed, num_calls
###############################################################
def bin_search(x_0, x_random, tol):
num_calls = 0
adv = x_random
cln = x_0
while True:
mid = (cln + adv) / 2.0
num_calls += 1
if is_adversarial(mid, orig_label):
adv = mid
else:
cln = mid
if torch.norm(adv-cln).cpu().numpy()<tol:
break
return adv, num_calls
###############################################################
def black_grad_batch(x_boundary, q_max, sigma, random_noises, batch_size, original_label):
grad_tmp = [] # estimated gradients in each estimate_batch
z = [] # sign of grad_tmp
outs = []
num_batchs = math.ceil(q_max/batch_size)
last_batch = q_max - (num_batchs-1)*batch_size
EstNoise = SubNoise(batch_size, sub_basis_torch).cuda()
all_noises = []
for j in range(num_batchs):
if j == num_batchs-1:
EstNoise_last = SubNoise(last_batch, sub_basis_torch).cuda()
current_batch = EstNoise_last()
current_batch_np = current_batch.cpu().numpy()
noisy_boundary = [x_boundary[0,:,:,:].cpu().numpy()]*last_batch +sigma*current_batch.cpu().numpy()
else:
current_batch = EstNoise()
current_batch_np = current_batch.cpu().numpy()
noisy_boundary = [x_boundary[0,:,:,:].cpu().numpy()]*batch_size +sigma*current_batch.cpu().numpy()
all_noises.append(current_batch_np)
noisy_boundary_tensor = torch.tensor(noisy_boundary).to(device)
predict_labels = torch.argmax(net.forward(noisy_boundary_tensor),1).cpu().numpy().astype(int)
outs.append(predict_labels)
all_noise = np.concatenate(all_noises, axis=0)
outs = np.concatenate(outs, axis=0)
for i, predict_label in enumerate(outs):
if predict_label == original_label:
z.append(1)
grad_tmp.append(all_noise[i])
else:
z.append(-1)
grad_tmp.append(-all_noise[i])
grad = -(1/q_max)*sum(grad_tmp)
grad_f = torch.tensor(grad).to(device)[None, :,:,:]
return grad_f, sum(z)
###############################################################
def go_to_boundary(x_0, grad, x_b):
epsilon = 5
num_calls = 1
perturbed = x_0
if dist == 'l1' or dist == 'l2':
grads = grad
if dist == 'linf':
grads = torch.sign(grad)/torch.norm(grad)
while is_adversarial(perturbed, orig_label) == 0:
perturbed = x_0 + (num_calls*epsilon* grads[0])
perturbed = clip_image_values(perturbed, lb, ub)
num_calls += 1
if num_calls > 100:
print('falied ... ')
break
print
return perturbed, num_calls, epsilon*num_calls
###############################################################
def GeoDA(x_b, iteration, q_opt):
norms = []
q_num = 0
grad = 0
for i in range(iteration):
t1 = time.time()
random_vec_o = torch.randn(q_opt[i],3,224,224)
grad_oi, ratios = black_grad_batch(x_b, q_opt[i], sigma, random_vec_o, grad_estimator_batch_size , orig_label)
q_num = q_num + q_opt[i]
grad = grad_oi + grad
x_adv, qs, eps = go_to_boundary(x_0, grad, x_b)
q_num = q_num + qs
x_adv, bin_query = bin_search(x_0, x_adv, tol)
q_num = q_num + bin_query
x_b = x_adv
t2 = time.time()
x_adv_inv = inv_tf(x_adv.cpu().numpy()[0,:,:,:].squeeze(), mean, std)
if dist == 'l1' or dist == 'l2':
dp = 'l2'
norm_p = linalg.norm(x_adv_inv-image_fb)
if dist == 'linf':
dp = dist
norm_p = np.max(abs(x_adv_inv-image_fb))
if verbose_control == 'Yes':
message = ' (took {:.5f} seconds)'.format(t2 - t1)
print('iteration -> ' + str(i) + str(message) + ' -- ' + dp + ' norm is -> ' + str(norm_p))
x_adv = clip_image_values(x_adv, lb, ub)
return x_adv, q_num, grad
###############################################################
def opt_query_iteration(Nq, T, eta):
coefs=[eta**(-2*i/3) for i in range(0,T)]
coefs[0] = 1*coefs[0]
sum_coefs = sum(coefs)
opt_q=[round(Nq*coefs[i]/sum_coefs) for i in range(0,T)]
if opt_q[0]>80:
T = T + 1
opt_q, T = opt_query_iteration(Nq, T, eta)
elif opt_q[0]<50:
T = T - 1
opt_q, T = opt_query_iteration(Nq, T, eta)
return opt_q, T
def uni_query(Nq, T, eta):
opt_q=[round(Nq/T) for i in range(0,T)]
return opt_q
###############################################################
def load_image(image, shape=(224, 224), data_format='channels_last'):
assert len(shape) == 2
assert data_format in ['channels_first', 'channels_last']
image = image.resize(shape)
image = np.asarray(image, dtype=np.float32)
image = image[:, :, :3]
assert image.shape == shape + (3,)
if data_format == 'channels_first':
image = np.transpose(image, (2, 0, 1))
return image
###############################################################
class SubNoise(nn.Module):
"""given subspace x and the number of noises, generate sub noises"""
# x is the subspace basis
def __init__(self, num_noises, x):
self.num_noises = num_noises
self.x = x
super(SubNoise, self).__init__()
def forward(self):
r = torch.zeros([224 ** 2, 3*self.num_noises], dtype=torch.float32)
noise = torch.randn([self.x.shape[1], 3*self.num_noises], dtype=torch.float32).cuda()
sub_noise = torch.transpose(torch.mm(self.x, noise), 0, 1)
r = sub_noise.view([ self.num_noises, 3, 224, 224])
r_list = r
return r_list
###############################################################
if search_space == 'sub':
print('Check if DCT basis available ...')
path = os.path.join(os.path.dirname(__file__), '2d_dct_basis_{}.npy'.format(sub_dim))
if os.path.exists(path):
print('Yes, we already have it ...')
sub_basis = np.load('2d_dct_basis_{}.npy'.format(sub_dim)).astype(np.float32)
else:
print('Generating dct basis ......')
sub_basis = generate_2d_dct_basis(sub_dim).astype(np.float32)
print('Done!\n')
estimate_batch = grad_estimator_batch_size
sub_basis_torch = torch.from_numpy(sub_basis).cuda()
EstNoise = SubNoise(estimate_batch, sub_basis_torch).cuda()
random_vectors = EstNoise()
random_vectors_np = random_vectors.cpu().numpy()
###############################################################
# Models
resnet50 = torch_models.resnet50(pretrained=True).eval()
if torch.cuda.is_available():
resnet50 = resnet50.cuda()
meanfb = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
stdfb = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
fmodel = foolbox.models.PyTorchModel(
resnet50, bounds=(0, 1), num_classes=1000, preprocessing=(meanfb, stdfb))
# Check for cuda devices
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load a pretrained model
net = torch_models.resnet50(pretrained=True)
net = net.to(device)
net.eval()
####################################
## Load Image and Resize
#
t11 = time.time()
im_orig = Image.open(inp)
im_sz = 224
im_orig = transforms.Compose([transforms.Resize((im_sz, im_sz))])(im_orig)
image_fb = load_image(im_orig, data_format='channels_last')
image_fb = image_fb / 255. # because our model expects values in [0, 1]
image_fb_first = load_image(im_orig, data_format='channels_first')
image_fb_first = image_fb_first / 255.
# Bounds for Validity and Perceptibility
delta = 255
lb, ub = valid_bounds(im_orig, delta)
# Transform data
im = transforms.Compose([
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean = mean,
std = std)])(im_orig)
lb = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])(lb)
ub = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])(ub)
im_deepfool = im.to(device)
lb = lb[None, :, :, :].to(device)
ub = ub[None, :, :, :].to(device)
x_0 = im[None, :, :, :].to(device)
x_0_np = x_0.cpu().numpy()
orig_label = torch.argmax(net.forward(Variable(x_0, requires_grad=True)).data).item()
labels = open(os.path.join('synset_words.txt'), 'r').read().split('\n')
str_label_orig = get_label(labels[np.int(orig_label)].split(',')[0])
ground_truth = open(os.path.join('val.txt'), 'r').read().split('\n')
ground_name_label = ground_truth[image_num-1]
ground_label_split_all = ground_name_label.split
ground_label_split = ground_name_label.split()
ground_label = ground_name_label.split()[1]
ground_label_int = int(ground_label)
str_label_ground = get_label(labels[np.int(ground_label)].split(',')[0])
label_HSJA = np.argmax(fmodel.forward_one(image_fb_first))
str_HSJA_ground = get_label(labels[np.int(label_HSJA)].split(',')[0])
if ground_label_int != int(orig_label):
print('Already missclassified ... Lets try another one!')
else:
image_iter = image_iter + 1
x0_inverse = inv_tf(x_0.cpu().numpy()[0,:,:,:].squeeze(), mean, std)
dif_norm = linalg.norm(x0_inverse-image_fb)
###################################
x_random, query_random_1 = find_random_adversarial(x_0, epsilon=100)
x_rnd_inverse = inv_tf(x_random.cpu().numpy()[0,:,:,:].squeeze(), mean, std)
norm_rnd_inv = linalg.norm(x_rnd_inverse-image_fb)
is_adversarial(x_random, orig_label)
label_random = torch.argmax(net.forward(Variable(x_random, requires_grad=True)).data).item()
# Binary search
x_boundary, query_binsearch_2 = bin_search(x_0, x_random, tol)
x_b = x_boundary
Norm_rnd = torch.norm(x_0-x_boundary)
x_bin_inverse = inv_tf(x_boundary.cpu().numpy()[0,:,:,:].squeeze(), mean, std)
norm_bin_rnd = linalg.norm(x_bin_inverse-image_fb)
x_rnd_BA = np.swapaxes(x_bin_inverse, 0, 2)
x_rnd_BA = np.swapaxes(x_rnd_BA, 1, 2)
is_adversarial(x_boundary, orig_label)
label_boundary = torch.argmax(net.forward(Variable(x_boundary, requires_grad=True)).data).item()
query_rnd = query_binsearch_2 + query_random_1
###################################
# Run over iterations
iteration = round(Q_max/500)
q_opt_it = int(Q_max - (iteration)*25)
q_opt_iter, iterate = opt_query_iteration(q_opt_it, iteration, mu )
q_opt_it = int(Q_max - (iterate)*25)
q_opt_iter, iterate = opt_query_iteration(q_opt_it, iteration, mu )
print('#################################################################')
print('Start: The GeoDA will be run for:' + ' Iterations = ' + str(iterate) + ', Query = ' + str(Q_max) + ', Norm = ' + str(dist)+ ', Space = ' + str(search_space) )
print('#################################################################')
t3 = time.time()
x_adv, query_o, gradient = GeoDA(x_b, iterate, q_opt_iter)
t4 = time.time()
message = ' took {:.5f} seconds'.format(t4 - t3)
qmessage = ' with query = ' + str(query_o + query_rnd)
x_opt_inverse = inv_tf(x_adv.cpu().numpy()[0,:,:,:].squeeze(), mean, std)
norm_inv_opt = linalg.norm(x_opt_inverse-image_fb)
print('#################################################################')
print('End: The GeoDA algorithm' + message + qmessage )
print('#################################################################')
if dist == 'l2' or dist == 'linf':
adv_label = torch.argmax(net.forward(Variable(x_adv, requires_grad=True)).data).item()
str_label_adv = get_label(labels[np.int(adv_label)].split(',')[0])
pert_norm = abs(x_opt_inverse-image_fb)/np.linalg.norm(abs(x_opt_inverse-image_fb))
pert_norm_abs = (x_opt_inverse-image_fb)/np.linalg.norm((x_opt_inverse-image_fb))
pertimage = image_fb + 30*pert_norm_abs
fig, axes = plt.subplots(1, 4,figsize=(16,16))
axes[0].imshow(image_fb)
axes[1].imshow(x_opt_inverse)
axes[3].imshow(pertimage)
axes[2].imshow(100*pert_norm)
axes[0].set_title('original: ' + str_label_orig )
axes[2].set_title('magnified perturbation: $\ell_2$ subspace')
axes[3].set_title('image + magnified perturbation' )
axes[1].set_title('perturbed: ' + str_label_adv)
axes[0].axis('off')
axes[1].axis('off')
axes[2].axis('off')
axes[3].axis('off')
plt.show()