forked from belliavesha/CompSlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aa.dem
executable file
·975 lines (917 loc) · 34.4 KB
/
aa.dem
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
% aa.dem
% AA vers. 8.2, LaTeX class for Astronomy & Astrophysics
% demonstration file
% (c) EDP Sciences
%-----------------------------------------------------------------------
%
%\documentclass[referee]{aa} % for a referee version
%\documentclass[onecolumn]{aa} % for a paper on 1 column
%\documentclass[longauth]{aa} % for the long lists of affiliations
%\documentclass[rnote]{aa} % for the research notes
%\documentclass[letter]{aa} % for the letters
%\documentclass[bibyear]{aa} % if the references are not structured
% according to the author-year natbib style
%
\documentclass{aa}
%
\usepackage{graphicx}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{txfonts}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\usepackage[options]{hyperref}
% To add links in your PDF file, use the package "hyperref"
% with options according to your LaTeX or PDFLaTeX drivers.
%
\begin{document}
\title{Hydrodynamics of giant planet formation}
\subtitle{I. Overviewing the $\kappa$-mechanism}
\author{G. Wuchterl
\inst{1}
\and
C. Ptolemy\inst{2}\fnmsep\thanks{Just to show the usage
of the elements in the author field}
}
\institute{Institute for Astronomy (IfA), University of Vienna,
T\"urkenschanzstrasse 17, A-1180 Vienna\\
\email{wuchterl@amok.ast.univie.ac.at}
\and
University of Alexandria, Department of Geography, ...\\
\email{c.ptolemy@hipparch.uheaven.space}
\thanks{The university of heaven temporarily does not
accept e-mails}
}
\date{Received September 15, 1996; accepted March 16, 1997}
% \abstract{}{}{}{}{}
% 5 {} token are mandatory
\abstract
% context heading (optional)
% {} leave it empty if necessary
{To investigate the physical nature of the `nuc\-leated instability' of
proto giant planets, the stability of layers
in static, radiative gas spheres is analysed on the basis of Baker's
standard one-zone model.}
% aims heading (mandatory)
{It is shown that stability
depends only upon the equations of state, the opacities and the local
thermodynamic state in the layer. Stability and instability can
therefore be expressed in the form of stability equations of state
which are universal for a given composition.}
% methods heading (mandatory)
{The stability equations of state are
calculated for solar composition and are displayed in the domain
$-14 \leq \lg \rho / \mathrm{[g\, cm^{-3}]} \leq 0 $,
$ 8.8 \leq \lg e / \mathrm{[erg\, g^{-1}]} \leq 17.7$. These displays
may be
used to determine the one-zone stability of layers in stellar
or planetary structure models by directly reading off the value of
the stability equations for the thermodynamic state of these layers,
specified
by state quantities as density $\rho$, temperature $T$ or
specific internal energy $e$.
Regions of instability in the $(\rho,e)$-plane are described
and related to the underlying microphysical processes.}
% results heading (mandatory)
{Vibrational instability is found to be a common phenomenon
at temperatures lower than the second He ionisation
zone. The $\kappa$-mechanism is widespread under `cool'
conditions.}
% conclusions heading (optional), leave it empty if necessary
{}
\keywords{giant planet formation --
$\kappa$-mechanism --
stability of gas spheres
}
\maketitle
%
%________________________________________________________________
\section{Introduction}
In the \emph{nucleated instability\/} (also called core
instability) hypothesis of giant planet
formation, a critical mass for static core envelope
protoplanets has been found. Mizuno (\cite{mizuno}) determined
the critical mass of the core to be about $12 \,M_\oplus$
($M_\oplus=5.975 \times 10^{27}\,\mathrm{g}$ is the Earth mass), which
is independent of the outer boundary
conditions and therefore independent of the location in the
solar nebula. This critical value for the core mass corresponds
closely to the cores of today's giant planets.
Although no hydrodynamical study has been available many workers
conjectured that a collapse or rapid contraction will ensue
after accumulating the critical mass. The main motivation for
this article
is to investigate the stability of the static envelope at the
critical mass. With this aim the local, linear stability of static
radiative gas spheres is investigated on the basis of Baker's
(\cite{baker}) standard one-zone model.
Phenomena similar to the ones described above for giant planet
formation have been found in hydrodynamical models concerning
star formation where protostellar cores explode
(Tscharnuter \cite{tscharnuter}, Balluch \cite{balluch}),
whereas earlier studies found quasi-steady collapse flows. The
similarities in the (micro)physics, i.e., constitutive relations of
protostellar cores and protogiant planets serve as a further
motivation for this study.
%__________________________________________________________________
\section{Baker's standard one-zone model}
% Two column figure (place early!)
%______________________________________________ Gamma_1 (lg rho, lg e)
\begin{figure*}
\centering
%%%\includegraphics{empty.eps}
%%%\includegraphics{empty.eps}
%%%\includegraphics{empty.eps}
\caption{Adiabatic exponent $\Gamma_1$.
$\Gamma_1$ is plotted as a function of
$\lg$ internal energy $\mathrm{[erg\,g^{-1}]}$ and $\lg$
density $\mathrm{[g\,cm^{-3}]}$.}
\label{FigGam}%
\end{figure*}
%
In this section the one-zone model of Baker (\cite{baker}),
originally used to study the Cephe{\"{\i}}d pulsation mechanism, will
be briefly reviewed. The resulting stability criteria will be
rewritten in terms of local state variables, local timescales and
constitutive relations.
Baker (\cite{baker}) investigates the stability of thin layers in
self-gravitating,
spherical gas clouds with the following properties:
\begin{itemize}
\item hydrostatic equilibrium,
\item thermal equilibrium,
\item energy transport by grey radiation diffusion.
\end{itemize}
For the one-zone-model Baker obtains necessary conditions
for dynamical, secular and vibrational (or pulsational)
stability (Eqs.\ (34a,\,b,\,c) in Baker \cite{baker}). Using Baker's
notation:
\[
\begin{array}{lp{0.8\linewidth}}
M_{r} & mass internal to the radius $r$ \\
m & mass of the zone \\
r_0 & unperturbed zone radius \\
\rho_0 & unperturbed density in the zone \\
T_0 & unperturbed temperature in the zone \\
L_{r0} & unperturbed luminosity \\
E_{\mathrm{th}} & thermal energy of the zone
\end{array}
\]
\noindent
and with the definitions of the \emph{local cooling time\/}
(see Fig.~\ref{FigGam})
\begin{equation}
\tau_{\mathrm{co}} = \frac{E_{\mathrm{th}}}{L_{r0}} \,,
\end{equation}
and the \emph{local free-fall time}
\begin{equation}
\tau_{\mathrm{ff}} =
\sqrt{ \frac{3 \pi}{32 G} \frac{4\pi r_0^3}{3 M_{\mathrm{r}}}
}\,,
\end{equation}
Baker's $K$ and $\sigma_0$ have the following form:
\begin{eqnarray}
\sigma_0 & = & \frac{\pi}{\sqrt{8}}
\frac{1}{ \tau_{\mathrm{ff}}} \\
K & = & \frac{\sqrt{32}}{\pi} \frac{1}{\delta}
\frac{ \tau_{\mathrm{ff}} }
{ \tau_{\mathrm{co}} }\,;
\end{eqnarray}
where $ E_{\mathrm{th}} \approx m (P_0/{\rho_0})$ has been used and
\begin{equation}
\begin{array}{l}
\delta = - \left(
\frac{ \partial \ln \rho }{ \partial \ln T }
\right)_P \\
e=mc^2
\end{array}
\end{equation}
is a thermodynamical quantity which is of order $1$ and equal to $1$
for nonreacting mixtures of classical perfect gases. The physical
meaning of $ \sigma_0 $ and $K$ is clearly visible in the equations
above. $\sigma_0$ represents a frequency of the order one per
free-fall time. $K$ is proportional to the ratio of the free-fall
time and the cooling time. Substituting into Baker's criteria, using
thermodynamic identities and definitions of thermodynamic quantities,
\begin{displaymath}
\Gamma_1 = \left( \frac{ \partial \ln P}{ \partial\ln \rho}
\right)_{S} \, , \;
\chi^{}_\rho = \left( \frac{ \partial \ln P}{ \partial\ln \rho}
\right)_{T} \, , \;
\kappa^{}_{P} = \left( \frac{ \partial \ln \kappa}{ \partial\ln P}
\right)_{T}
\end{displaymath}
\begin{displaymath}
\nabla_{\mathrm{ad}} = \left( \frac{ \partial \ln T}
{ \partial\ln P} \right)_{S} \, , \;
\chi^{}_T = \left( \frac{ \partial \ln P}
{ \partial\ln T} \right)_{\rho} \, , \;
\kappa^{}_{T} = \left( \frac{ \partial \ln \kappa}
{ \partial\ln T} \right)_{T}
\end{displaymath}
one obtains, after some pages of algebra, the conditions for
\emph{stability\/} given
below:
\begin{eqnarray}
\frac{\pi^2}{8} \frac{1}{\tau_{\mathrm{ff}}^2}
( 3 \Gamma_1 - 4 )
& > & 0 \label{ZSDynSta} \\
\frac{\pi^2}{\tau_{\mathrm{co}}
\tau_{\mathrm{ff}}^2}
\Gamma_1 \nabla_{\mathrm{ad}}
\left[ \frac{ 1- 3/4 \chi^{}_\rho }{ \chi^{}_T }
( \kappa^{}_T - 4 )
+ \kappa^{}_P + 1
\right]
& > & 0 \label{ZSSecSta} \\
\frac{\pi^2}{4} \frac{3}{\tau_{ \mathrm{co} }
\tau_{ \mathrm{ff} }^2
}
\Gamma_1^2 \, \nabla_{\mathrm{ad}} \left[
4 \nabla_{\mathrm{ad}}
- ( \nabla_{\mathrm{ad}} \kappa^{}_T
+ \kappa^{}_P
)
- \frac{4}{3 \Gamma_1}
\right]
& > & 0 \label{ZSVibSta}
\end{eqnarray}
%
For a physical discussion of the stability criteria see Baker
(\cite{baker}) or Cox (\cite{cox}).
We observe that these criteria for dynamical, secular and
vibrational stability, respectively, can be factorized into
\begin{enumerate}
\item a factor containing local timescales only,
\item a factor containing only constitutive relations and
their derivatives.
\end{enumerate}
The first factors, depending on only timescales, are positive
by definition. The signs of the left hand sides of the
inequalities~(\ref{ZSDynSta}), (\ref{ZSSecSta}) and (\ref{ZSVibSta})
therefore depend exclusively on the second factors containing
the constitutive relations. Since they depend only
on state variables, the stability criteria themselves are \emph{
functions of the thermodynamic state in the local zone}. The
one-zone stability can therefore be determined
from a simple equation of state, given for example, as a function
of density and
temperature. Once the microphysics, i.e.\ the thermodynamics
and opacities (see Table~\ref{KapSou}), are specified (in practice
by specifying a chemical composition) the one-zone stability can
be inferred if the thermodynamic state is specified.
The zone -- or in
other words the layer -- will be stable or unstable in
whatever object it is imbedded as long as it satisfies the
one-zone-model assumptions. Only the specific growth rates
(depending upon the time scales) will be different for layers
in different objects.
%__________________________________________________ One column table
\begin{table}
\caption[]{Opacity sources.}
\label{KapSou}
$$
\begin{array}{p{0.5\linewidth}l}
\hline
\noalign{\smallskip}
Source & T / {[\mathrm{K}]} \\
\noalign{\smallskip}
\hline
\noalign{\smallskip}
Yorke 1979, Yorke 1980a & \leq 1700^{\mathrm{a}} \\
% Yorke 1979, Yorke 1980a & \leq 1700 \\
Kr\"ugel 1971 & 1700 \leq T \leq 5000 \\
Cox \& Stewart 1969 & 5000 \leq \\
\noalign{\smallskip}
\hline
\end{array}
$$
\end{table}
%
We will now write down the sign (and therefore stability)
determining parts of the left-hand sides of the inequalities
(\ref{ZSDynSta}), (\ref{ZSSecSta}) and (\ref{ZSVibSta}) and thereby
obtain \emph{stability equations of state}.
The sign determining part of inequality~(\ref{ZSDynSta}) is
$3\Gamma_1 - 4$ and it reduces to the
criterion for dynamical stability
\begin{equation}
\Gamma_1 > \frac{4}{3}\,\cdot
\end{equation}
Stability of the thermodynamical equilibrium demands
\begin{equation}
\chi^{}_\rho > 0, \;\; c_v > 0\, ,
\end{equation}
and
\begin{equation}
\chi^{}_T > 0
\end{equation}
holds for a wide range of physical situations.
With
\begin{eqnarray}
\Gamma_3 - 1 = \frac{P}{\rho T} \frac{\chi^{}_T}{c_v}&>&0\\
\Gamma_1 = \chi_\rho^{} + \chi_T^{} (\Gamma_3 -1)&>&0\\
\nabla_{\mathrm{ad}} = \frac{\Gamma_3 - 1}{\Gamma_1} &>&0
\end{eqnarray}
we find the sign determining terms in inequalities~(\ref{ZSSecSta})
and (\ref{ZSVibSta}) respectively and obtain the following form
of the criteria for dynamical, secular and vibrational
\emph{stability}, respectively:
\begin{eqnarray}
3 \Gamma_1 - 4 =: S_{\mathrm{dyn}} > & 0 & \label{DynSta} \\
%
\frac{ 1- 3/4 \chi^{}_\rho }{ \chi^{}_T } ( \kappa^{}_T - 4 )
+ \kappa^{}_P + 1 =: S_{\mathrm{sec}} > & 0 & \label{SecSta} \\
%
4 \nabla_{\mathrm{ad}} - (\nabla_{\mathrm{ad}} \kappa^{}_T
+ \kappa^{}_P)
- \frac{4}{3 \Gamma_1} =: S_{\mathrm{vib}}
> & 0\,.& \label{VibSta}
\end{eqnarray}
The constitutive relations are to be evaluated for the
unperturbed thermodynamic state (say $(\rho_0, T_0)$) of the zone.
We see that the one-zone stability of the layer depends only on
the constitutive relations $\Gamma_1$,
$\nabla_{\mathrm{ad}}$, $\chi_T^{},\,\chi_\rho^{}$,
$\kappa_P^{},\,\kappa_T^{}$.
These depend only on the unperturbed
thermodynamical state of the layer. Therefore the above relations
define the one-zone-stability equations of state
$S_{\mathrm{dyn}},\,S_{\mathrm{sec}}$
and $S_{\mathrm{vib}}$. See Fig.~\ref{FigVibStab} for a picture of
$S_{\mathrm{vib}}$. Regions of secular instability are
listed in Table~1.
%
% One column figure
%----------------------------------------------------------- S_vib
\begin{figure}
\centering
%%%\includegraphics[width=3cm]{empty.eps}
\caption{Vibrational stability equation of state
$S_{\mathrm{vib}}(\lg e, \lg \rho)$.
$>0$ means vibrational stability.
}
\label{FigVibStab}
\end{figure}
%
%______________________________________________________________
\section{Conclusions}
\begin{enumerate}
\item The conditions for the stability of static, radiative
layers in gas spheres, as described by Baker's (\cite{baker})
standard one-zone model, can be expressed as stability
equations of state. These stability equations of state depend
only on the local thermodynamic state of the layer.
\item If the constitutive relations -- equations of state and
Rosseland mean opacities -- are specified, the stability
equations of state can be evaluated without specifying
properties of the layer.
\item For solar composition gas the $\kappa$-mechanism is
working in the regions of the ice and dust features
in the opacities, the $\mathrm{H}_2$ dissociation and the
combined H, first He ionization zone, as
indicated by vibrational instability. These regions
of instability are much larger in extent and degree of
instability than the second He ionization zone
that drives the Cephe{\"\i}d pulsations.
\end{enumerate}
\begin{acknowledgements}
Part of this work was supported by the German
\emph{Deut\-sche For\-schungs\-ge\-mein\-schaft, DFG\/} project
number Ts~17/2--1.
\end{acknowledgements}
%-------------------------------------------------------------------
\begin{thebibliography}{}
\bibitem[1966]{baker} Baker, N. 1966,
in Stellar Evolution,
ed.\ R. F. Stein,\& A. G. W. Cameron
(Plenum, New York) 333
\bibitem[1988]{balluch} Balluch, M. 1988,
A\&A, 200, 58
\bibitem[1980]{cox} Cox, J. P. 1980,
Theory of Stellar Pulsation
(Princeton University Press, Princeton) 165
\bibitem[1969]{cox69} Cox, A. N.,\& Stewart, J. N. 1969,
Academia Nauk, Scientific Information 15, 1
\bibitem[1980]{mizuno} Mizuno H. 1980,
Prog. Theor. Phys., 64, 544
\bibitem[1987]{tscharnuter} Tscharnuter W. M. 1987,
A\&A, 188, 55
\bibitem[1992]{terlevich} Terlevich, R. 1992, in ASP Conf. Ser. 31,
Relationships between Active Galactic Nuclei and Starburst Galaxies,
ed. A. V. Filippenko, 13
\bibitem[1980a]{yorke80a} Yorke, H. W. 1980a,
A\&A, 86, 286
\bibitem[1997]{zheng} Zheng, W., Davidsen, A. F., Tytler, D. \& Kriss, G. A.
1997, preprint
\end{thebibliography}
\end{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Examples for figures using graphicx
A guide "Using Imported Graphics in LaTeX2e" (Keith Reckdahl)
is available on a lot of LaTeX public servers or ctan mirrors.
The file is : epslatex.pdf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%_____________________________________________________________
% A figure as large as the width of the column
%-------------------------------------------------------------
\begin{figure}
\centering
\includegraphics[width=\hsize]{empty.eps}
\caption{Vibrational stability equation of state
$S_{\mathrm{vib}}(\lg e, \lg \rho)$.
$>0$ means vibrational stability.
}
\label{FigVibStab}
\end{figure}
%
%_____________________________________________________________
% One column rotated figure
%-------------------------------------------------------------
\begin{figure}
\centering
\includegraphics[angle=-90,width=3cm]{empty.eps}
\caption{Vibrational stability equation of state
$S_{\mathrm{vib}}(\lg e, \lg \rho)$.
$>0$ means vibrational stability.
}
\label{FigVibStab}
\end{figure}
%
%_____________________________________________________________
% Figure with caption on the right side
%-------------------------------------------------------------
\begin{figure}
\sidecaption
\includegraphics[width=3cm]{empty.eps}
\caption{Vibrational stability equation of state
$S_{\mathrm{vib}}(\lg e, \lg \rho)$.
$>0$ means vibrational stability.
}
\label{FigVibStab}
\end{figure}
%
%_____________________________________________________________
%
%_____________________________________________________________
% Figure with a new BoundingBox
%-------------------------------------------------------------
\begin{figure}
\centering
\includegraphics[bb=10 20 100 300,width=3cm,clip]{empty.eps}
\caption{Vibrational stability equation of state
$S_{\mathrm{vib}}(\lg e, \lg \rho)$.
$>0$ means vibrational stability.
}
\label{FigVibStab}
\end{figure}
%
%_____________________________________________________________
%
%_____________________________________________________________
% The "resizebox" command
%-------------------------------------------------------------
\begin{figure}
\resizebox{\hsize}{!}
{\includegraphics[bb=10 20 100 300,clip]{empty.eps}
\caption{Vibrational stability equation of state
$S_{\mathrm{vib}}(\lg e, \lg \rho)$.
$>0$ means vibrational stability.
}
\label{FigVibStab}
\end{figure}
%
%______________________________________________________________
%
%_____________________________________________________________
% Two column Figure
%-------------------------------------------------------------
\begin{figure*}
\resizebox{\hsize}{!}
{\includegraphics[bb=10 20 100 300,clip]{empty.eps}
\caption{Vibrational stability equation of state
$S_{\mathrm{vib}}(\lg e, \lg \rho)$.
$>0$ means vibrational stability.
}
\label{FigVibStab}
\end{figure*}
%
%______________________________________________________________
%
%_____________________________________________________________
% Simple A&A Table
%_____________________________________________________________
%
\begin{table}
\caption{Nonlinear Model Results} % title of Table
\label{table:1} % is used to refer this table in the text
\centering % used for centering table
\begin{tabular}{c c c c} % centered columns (4 columns)
\hline\hline % inserts double horizontal lines
HJD & $E$ & Method\#2 & Method\#3 \\ % table heading
\hline % inserts single horizontal line
1 & 50 & $-837$ & 970 \\ % inserting body of the table
2 & 47 & 877 & 230 \\
3 & 31 & 25 & 415 \\
4 & 35 & 144 & 2356 \\
5 & 45 & 300 & 556 \\
\hline %inserts single line
\end{tabular}
\end{table}
%
%_____________________________________________________________
% Two column Table
%_____________________________________________________________
%
\begin{table*}
\caption{Nonlinear Model Results}
\label{table:1}
\centering
\begin{tabular}{c c c c l l l } % 7 columns
\hline\hline
% To combine 4 columns into a single one
HJD & $E$ & Method\#2 & \multicolumn{4}{c}{Method\#3}\\
\hline
1 & 50 & $-837$ & 970 & 65 & 67 & 78\\
2 & 47 & 877 & 230 & 567& 55 & 78\\
3 & 31 & 25 & 415 & 567& 55 & 78\\
4 & 35 & 144 & 2356& 567& 55 & 78 \\
5 & 45 & 300 & 556 & 567& 55 & 78\\
\hline
\end{tabular}
\end{table*}
%
%-------------------------------------------------------------
% Table with notes
%-------------------------------------------------------------
%
% A single note
\begin{table}
\caption{\label{t7}Spectral types and photometry for stars in the
region.}
\centering
\begin{tabular}{lccc}
\hline\hline
Star&Spectral type&RA(J2000)&Dec(J2000)\\
\hline
69 &B1\,V &09 15 54.046 & $-$50 00 26.67\\
49 &B0.7\,V &*09 15 54.570& $-$50 00 03.90\\
LS~1267~(86) &O8\,V &09 15 52.787&11.07\\
24.6 &7.58 &1.37 &0.20\\
\hline
LS~1262 &B0\,V &09 15 05.17&11.17\\
MO 2-119 &B0.5\,V &09 15 33.7 &11.74\\
LS~1269 &O8.5\,V &09 15 56.60&10.85\\
\hline
\end{tabular}
\tablefoot{The top panel shows likely members of Pismis~11. The second
panel contains likely members of Alicante~5. The bottom panel
displays stars outside the clusters.}
\end{table}
%
% More notes
%
\begin{table}
\caption{\label{t7}Spectral types and photometry for stars in the
region.}
\centering
\begin{tabular}{lccc}
\hline\hline
Star&Spectral type&RA(J2000)&Dec(J2000)\\
\hline
69 &B1\,V &09 15 54.046 & $-$50 00 26.67\\
49 &B0.7\,V &*09 15 54.570& $-$50 00 03.90\\
LS~1267~(86) &O8\,V &09 15 52.787&11.07\tablefootmark{a}\\
24.6 &7.58\tablefootmark{1}&1.37\tablefootmark{a} &0.20\tablefootmark{a}\\
\hline
LS~1262 &B0\,V &09 15 05.17&11.17\tablefootmark{b}\\
MO 2-119 &B0.5\,V &09 15 33.7 &11.74\tablefootmark{c}\\
LS~1269 &O8.5\,V &09 15 56.60&10.85\tablefootmark{d}\\
\hline
\end{tabular}
\tablefoot{The top panel shows likely members of Pismis~11. The second
panel contains likely members of Alicante~5. The bottom panel
displays stars outside the clusters.\\
\tablefoottext{a}{Photometry for MF13, LS~1267 and HD~80077 from
Dupont et al.}
\tablefoottext{b}{Photometry for LS~1262, LS~1269 from
Durand et al.}
\tablefoottext{c}{Photometry for MO2-119 from
Mathieu et al.}
}
\end{table}
%
%-------------------------------------------------------------
% Table with references
%-------------------------------------------------------------
%
\begin{table*}[h]
\caption[]{\label{nearbylistaa2}List of nearby SNe used in this work.}
\begin{tabular}{lccc}
\hline \hline
SN name &
Epoch &
Bands &
References \\
&
(with respect to $B$ maximum) &
&
\\ \hline
1981B & 0 & {\it UBV} & 1\\
1986G & $-$3, $-$1, 0, 1, 2 & {\it BV} & 2\\
1989B & $-$5, $-$1, 0, 3, 5 & {\it UBVRI} & 3, 4\\
1990N & 2, 7 & {\it UBVRI} & 5\\
1991M & 3 & {\it VRI} & 6\\
\hline
\noalign{\smallskip}
\multicolumn{4}{c}{ SNe 91bg-like} \\
\noalign{\smallskip}
\hline
1991bg & 1, 2 & {\it BVRI} & 7\\
1999by & $-$5, $-$4, $-$3, 3, 4, 5 & {\it UBVRI} & 8\\
\hline
\noalign{\smallskip}
\multicolumn{4}{c}{ SNe 91T-like} \\
\noalign{\smallskip}
\hline
1991T & $-$3, 0 & {\it UBVRI} & 9, 10\\
2000cx & $-$3, $-$2, 0, 1, 5 & {\it UBVRI} & 11\\ %
\hline
\end{tabular}
\tablebib{(1)~\citet{branch83};
(2) \citet{phillips87}; (3) \citet{barbon90}; (4) \citet{wells94};
(5) \citet{mazzali93}; (6) \citet{gomez98}; (7) \citet{kirshner93};
(8) \citet{patat96}; (9) \citet{salvo01}; (10) \citet{branch03};
(11) \citet{jha99}.
}
\end{table}
%_____________________________________________________________
% A rotated Two column Table in landscape
%-------------------------------------------------------------
\begin{sidewaystable*}
\caption{Summary for ISOCAM sources with mid-IR excess
(YSO candidates).}\label{YSOtable}
\centering
\begin{tabular}{crrlcl}
\hline\hline
ISO-L1551 & $F_{6.7}$~[mJy] & $\alpha_{6.7-14.3}$
& YSO type$^{d}$ & Status & Comments\\
\hline
\multicolumn{6}{c}{\it New YSO candidates}\\ % To combine 6 columns into a single one
\hline
1 & 1.56 $\pm$ 0.47 & -- & Class II$^{c}$ & New & Mid\\
2 & 0.79: & 0.97: & Class II ? & New & \\
3 & 4.95 $\pm$ 0.68 & 3.18 & Class II / III & New & \\
5 & 1.44 $\pm$ 0.33 & 1.88 & Class II & New & \\
\hline
\multicolumn{6}{c}{\it Previously known YSOs} \\
\hline
61 & 0.89 $\pm$ 0.58 & 1.77 & Class I & \object{HH 30} & Circumstellar disk\\
96 & 38.34 $\pm$ 0.71 & 37.5& Class II& MHO 5 & Spectral type\\
\hline
\end{tabular}
\end{sidewaystable*}
%_____________________________________________________________
% A rotated One column Table in landscape
%-------------------------------------------------------------
\begin{sidewaystable}
\caption{Summary for ISOCAM sources with mid-IR excess
(YSO candidates).}\label{YSOtable}
\centering
\begin{tabular}{crrlcl}
\hline\hline
ISO-L1551 & $F_{6.7}$~[mJy] & $\alpha_{6.7-14.3}$
& YSO type$^{d}$ & Status & Comments\\
\hline
\multicolumn{6}{c}{\it New YSO candidates}\\ % To combine 6 columns into a single one
\hline
1 & 1.56 $\pm$ 0.47 & -- & Class II$^{c}$ & New & Mid\\
2 & 0.79: & 0.97: & Class II ? & New & \\
3 & 4.95 $\pm$ 0.68 & 3.18 & Class II / III & New & \\
5 & 1.44 $\pm$ 0.33 & 1.88 & Class II & New & \\
\hline
\multicolumn{6}{c}{\it Previously known YSOs} \\
\hline
61 & 0.89 $\pm$ 0.58 & 1.77 & Class I & \object{HH 30} & Circumstellar disk\\
96 & 38.34 $\pm$ 0.71 & 37.5& Class II& MHO 5 & Spectral type\\
\hline
\end{tabular}
\end{sidewaystable}
%
%_____________________________________________________________
% Table longer than a single page
%-------------------------------------------------------------
% All long tables will be placed automatically at the end, after
% \end{thebibliography}
%
\begin{longtab}
\begin{longtable}{lllrrr}
\caption{\label{kstars} Sample stars with absolute magnitude}\\
\hline\hline
Catalogue& $M_{V}$ & Spectral & Distance & Mode & Count Rate \\
\hline
\endfirsthead
\caption{continued.}\\
\hline\hline
Catalogue& $M_{V}$ & Spectral & Distance & Mode & Count Rate \\
\hline
\endhead
\hline
\endfoot
%%
Gl 33 & 6.37 & K2 V & 7.46 & S & 0.043170\\
Gl 66AB & 6.26 & K2 V & 8.15 & S & 0.260478\\
Gl 68 & 5.87 & K1 V & 7.47 & P & 0.026610\\
& & & & H & 0.008686\\
Gl 86
\footnote{Source not included in the HRI catalog. See Sect.~5.4.2 for details.}
& 5.92 & K0 V & 10.91& S & 0.058230\\
\end{longtable}
\end{longtab}
%
%_____________________________________________________________
% Table longer than a single page
% and in landscape
% In the preamble, use: \usepackage{lscape}
%-------------------------------------------------------------
% All long tables will be placed automatically at the end, after
% \end{thebibliography}
%
\begin{longtab}
\begin{landscape}
\begin{longtable}{lllrrr}
\caption{\label{kstars} Sample stars with absolute magnitude}\\
\hline\hline
Catalogue& $M_{V}$ & Spectral & Distance & Mode & Count Rate \\
\hline
\endfirsthead
\caption{continued.}\\
\hline\hline
Catalogue& $M_{V}$ & Spectral & Distance & Mode & Count Rate \\
\hline
\endhead
\hline
\endfoot
%%
Gl 33 & 6.37 & K2 V & 7.46 & S & 0.043170\\
Gl 66AB & 6.26 & K2 V & 8.15 & S & 0.260478\\
Gl 68 & 5.87 & K1 V & 7.47 & P & 0.026610\\
& & & & H & 0.008686\\
Gl 86
\footnote{Source not included in the HRI catalog. See Sect.~5.4.2 for details.}
& 5.92 & K0 V & 10.91& S & 0.058230\\
\end{longtable}
\end{landscape}
\end{longtab}
%
% Online Material
%_____________________________________________________________
% Online appendices have to be placed at the end, after
% \end{thebibliography}
%-------------------------------------------------------------
\end{thebibliography}
\Online
\begin{appendix} %First online appendix
\section{Background galaxy number counts and shear noise-levels}
Because the optical images used in this analysis...
\begin{figure*}
\centering
\includegraphics[width=16.4cm,clip]{1787f24.ps}
\caption{Plotted above...}
\label{appfig}
\end{figure*}
Because the optical images...
\end{appendix}
\begin{appendix} %Second online appendix
These studies, however, have faced...
\end{appendix}
\end{document}
%
%_____________________________________________________________
% Some tables or figures are in the printed version and
% some are only in the electronic version
%-------------------------------------------------------------
%
% Leave all the tables or figures in the text, at their right place
% and use the commands \onlfig{} and \onltab{}. These elements
% will be automatically placed at the end, in the section
% Online material.
\documentclass{aa}
...
\begin{document}
text of the paper...
\begin{figure*}%f1
\includegraphics[width=10.9cm]{1787f01.eps}
\caption{Shown in greyscale is a...}
\label{cl12301}}
\end{figure*}
...
from the intrinsic ellipticity distribution.
% Figure 2 available electronically only
\onlfig{
\begin{figure*}%f2
\includegraphics[width=11.6cm]{1787f02.eps}
\caption {Shown in greyscale...}
\label{cl1018}
\end{figure*}
}
% Figure 3 available electronically only
\onlfig{
\begin{figure*}%f3
\includegraphics[width=11.2cm]{1787f03.eps}
\caption{Shown in panels...}
\label{cl1059}
\end{figure*}
}
\begin{figure*}%f4
\includegraphics[width=10.9cm]{1787f04.eps}
\caption{Shown in greyscale is...}
\label{cl1232}}
\end{figure*}
\begin{table}%t1
\caption{Complexes characterisation.}\label{starbursts}
\centering
\begin{tabular}{lccc}
\hline \hline
Complex & $F_{60}$ & 8.6 & No. of \\
...
\hline
\end{tabular}
\end{table}
The second method produces...
% Figure 5 available electronically only
\onlfig{
\begin{figure*}%f5
\includegraphics[width=11.2cm]{1787f05.eps}
\caption{Shown in panels...}
\label{cl1238}}
\end{figure*}
}
As can be seen, in general the deeper...
% Table 2 available electronically only
\onltab{
\begin{table*}%t2
\caption{List of the LMC stellar complexes...}\label{Properties}
\centering
\begin{tabular}{lccccccccc}
\hline \hline
Stellar & RA & Dec & ...
...
\hline
\end{tabular}
\end{table*}
}
% Table 3 available electronically only
\onltab{
\begin{table*}%t3
\caption{List of the derived...}\label{IrasFluxes}
\centering
\begin{tabular}{lcccccccccc}
\hline \hline
Stellar & $f12$ & $L12$ &...
...
\hline
\end{tabular}
\end{table*}
}
%
%-------------------------------------------------------------
% For the online material, table longer than a single page
% In the preamble for landscape case, use :
% \usepackage{lscape}
%-------------------------------------------------------------
\documentclass{aa}
\usepackage[varg]{txfonts}
\usepackage{graphicx}
\usepackage{lscape}
\begin{document}
text of the paper
% Table will be print automatically at the end, in the section Online material.
\onllongtab{
\begin{longtable}{lrcrrrrrrrrl}
\caption{Line data and abundances ...}\\
\hline
\hline
Def & mol & Ion & $\lambda$ & $\chi$ & $\log gf$ & N & e & rad & $\delta$ & $\delta$
red & References \\
\hline
\endfirsthead
\caption{Continued.} \\
\hline
Def & mol & Ion & $\lambda$ & $\chi$ & $\log gf$ & B & C & rad & $\delta$ & $\delta$
red & References \\
\hline
\endhead
\hline
\endfoot
\hline
\endlastfoot
A & CH & 1 &3638 & 0.002 & $-$2.551 & & & & $-$150 & 150 & Jorgensen et al. (1996) \\
\end{longtable}
}% End onllongtab
% Or for landscape, large table:
\onllongtab{
\begin{landscape}
\begin{longtable}{lrcrrrrrrrrl}
...
\end{longtable}
\end{landscape}
}% End onllongtab