-
Notifications
You must be signed in to change notification settings - Fork 3
/
getMagLsFilters.m
143 lines (122 loc) · 5.71 KB
/
getMagLsFilters.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
function [wMlsL, wMlsR] = getMagLsFilters(hL, hR, hrirGridAziRad, hrirGridZenRad, ...
order, fs, len, applyDiffusenessConst, shDefinition, shFunction)
% [wMlsL, wMlsR] = getMagLsFilters(hL, hR, hrirGridAziRad, hrirGridZenRad, ...
% order, fs, len, applyDiffusenessConst, shDefinition, shFunction)
%
% This function calculates MagLS binaural decoding filters for head related
% impulse response data sets.
% For more information, please refer to
% Schörkhuber, Zaunschirm, and Hoeldrich,
% “Binaural Rendering of Ambisonic Signals via Magnitude Least Squares,”
% in Fortschritte der Akustik -- DAGA 2018, 2018, pp. 339–342.
%
% wMlsL .. time-domain decoding filter for left ear
% wMlsR .. time-domain decoding filter for right ear
% hL .. HRIR set for left ear (numSamples x numDirections)
% hR .. HRIR set for right ear (numSamples x numDirections)
% hrirGridAziRad .. grid azimuth angles in radians of HRIR set (numDirections x 1)
% hrirGridZenRad .. grid zenith angles in radians of HRIR set (numDirections x 1)
% order .. SH output order
% fs .. sampling frequency in Hz
% len .. desired length of magLS filters
% applyDiffusenessConst .. {true, false}, apply diffuseness constraint, default: false
% shDefinition .. SH basis type according to utilized shFunction, default: 'real'
% shFunction .. SH basis function (see testEMagLs.m for example), default: @getSH
%
% This software is licensed under a Non-Commercial Software License
% (see https://github.com/thomasdeppisch/eMagLS/blob/main/LICENSE for full details).
%
% Thomas Deppisch, 2023
if nargin < 10; shFunction = @getSH; end
if nargin < 9 || isempty(shDefinition); shDefinition = 'real'; end
if nargin < 8 || isempty(applyDiffusenessConst); applyDiffusenessConst = false; end
NFFT_MAX_LEN = 2048; % maxium oversamping length in samples
F_CUT_MIN_FREQ = 1e3; % minimum transition freqeuncy in Hz
DIFF_CONST_IMAG_THLD = 1e-9;
% TODO: Implement dealing with HRIRs that are longer than the requested filter
assert(len >= size(hL, 1), 'len too short');
nfft = min(NFFT_MAX_LEN, 2 * len); % apply frequency-domain oversampling
f = linspace(0, fs/2, nfft/2+1).';
numPosFreqs = length(f);
f_cut = max(F_CUT_MIN_FREQ, 500 * order); % from N > k
k_cut = ceil(f_cut / f(2));
fprintf('with transition at %d Hz ... ', ceil(f_cut));
numHarmonics = (order+1)^2;
numDirections = size(hL, 2);
fprintf('with @%s("%s") ... ', func2str(shFunction), shDefinition);
Y_conj = shFunction(order, [hrirGridAziRad, hrirGridZenRad], shDefinition)';
Y_pinv = pinv(Y_conj);
% estimate group delay, zero pad and remove group delay with subsample
% precision (this is an alternative to applying global phase delay later)
grpD = median(cat(3, grpdelay(sum(hL, 2), 1, f, fs), grpdelay(sum(hR, 2), 1, f, fs)));
h = cat(3, hL, hR);
clear hL hR;
h(end+1:nfft, :, :) = 0;
h = applySubsampleDelay(h, -grpD);
w_LS = pagemtimes(h, Y_pinv);
% transform into frequency domain
H = fft(h);
W_MLS = fft(w_LS);
for k = k_cut:numPosFreqs
phi = angle(pagemtimes(W_MLS(k-1, :, :), Y_conj));
if k == numPosFreqs && ~mod(nfft, 2) % Nyquist bin, is even
W_MLS(k, :, :) = pagemtimes(real(abs(H(k, :, :)) .* exp(1i * phi)), Y_pinv);
else
% positive frequencies
W_MLS(k, :, :) = pagemtimes(abs(H(k, :, :)) .* exp(1i * phi), Y_pinv);
if ~isreal(Y_conj)
% negative frequencies in case of complex-valued SHs
k_neg = nfft-k+2;
W_MLS(k_neg, :, :) = pagemtimes(abs(H(k_neg, :, :)) .* exp(1i * -phi), Y_pinv);
end
end
end
if applyDiffusenessConst
assert(strcmpi(shDefinition, 'real'), ...
'Diffuseness constraint is not implemented for "%s" SHs yet.', shDefinition);
% diffuseness constraint after Zaunschirm, Schoerkhuber, Hoeldrich,
% "Binaural rendering of Ambisonic signals by head-related impulse
% response time alignment and a diffuseness constraint"
HCorr = zeros(numPosFreqs, numHarmonics, 2, 'like', H);
for k = 1:numPosFreqs
% target covariance via original HRTF set
HT = squeeze(H(k, :, :));
RT = 1/numDirections * (HT' * HT);
RT_small = abs(imag(RT)) < DIFF_CONST_IMAG_THLD;
RT(RT_small) = real(RT(RT_small)); % neglect small imaginary parts
XT = chol(RT); % chol factor of covariance of HRTF set
% covariance of magLS HRTF set
HHat = squeeze(W_MLS(k, :, :));
RHat = 1/(4*pi) * (HHat' * HHat);
RHat_small = abs(imag(RHat)) < DIFF_CONST_IMAG_THLD; % neglect small imaginary parts
RHat(RHat_small) = real(RHat(RHat_small));
XHat = chol(RHat); % chol factor of magLS HRTF set in SHD
[U, s, V] = svd(XHat' * XT, 'econ', 'vector');
if any(imag(s) ~= 0) || any(s < 0)
warning('negative or complex singular values, pull out negative/complex and factor into left or right singular vector!')
end
M = V * U' * XT / XHat;
HCorr(k, :, :) = conj(HHat) * M;
end
W_MLS = conj(HCorr);
end
% transform into time domain
if isreal(Y_conj)
W_MLS = [W_MLS(1:numPosFreqs, :, :); flipud(conj(W_MLS(2:numPosFreqs-1, :, :)))];
end
wMls = ifft(W_MLS);
if isreal(Y_conj)
assert(isreal(wMls), 'Resulting decoding filters are not real valued.');
end
% shift from zero-phase-like to linear-phase-like
% and restore initial group-delay difference between ears
n_shift = nfft/2;
wMls = applySubsampleDelay(wMls, cat(3, n_shift, n_shift + diff(grpD)));
% shorten to target length
wMls = wMls(n_shift-len/2+1:n_shift+len/2, :, :);
% fade
fade_win = getFadeWindow(len);
wMls = wMls .* fade_win;
wMlsL = wMls(:, :, 1);
wMlsR = wMls(:, :, 2);
end